Design Optimizations of a High Performance Microprocessor Using Combinations of Dual-V_T Allocation and Transistor Sizing

James Tschanz, Yibin Ye, Liqiong Wei¹, Venkatesh Govindarajulu, Nitin Borkar, Steven Burns², Tanay Karnik, Shekhar Borkar and Vivek De Microprocessor Research, ¹Mobile Architecture, ²Strategic CAD, Intel Labs

Hillsboro, OR, USA

Joint optimizations of dual- V_T allocation and transistor sizing for a high performance microprocessor reduce low- V_T usage by 36%-64%, compared to a design where only dual- V_T allocation is optimized. Designs optimized for minimum power (DVT+S) and minimum area (L-SDVT) reduce leakage power by 20%, with minimal impact on total power and die area. An enhancement of the optimum DVT+S design allows processor frequency to be increased efficiently during manufacturing through low- V_T device leakage push only.