50nm - Gate All Around (GAA) - Silicon On Nothing (SON) - Devices: A Simple Way to Co-integration of GAA Transistors within bulk MOSFET process

S. Monfray^{2,1,4}, T. Skotnicki¹, Y.Morand¹, S.Descombes¹, P.Coronel¹, P.Mazoyer¹, S.Harrison⁴, P.Ribot¹, A.Talbot¹, D.Dutartre¹, M.Haond¹, R.Palla¹, Y.Le Friec¹, F.Leverd¹, M-E.Nier¹, C.Vizioz³, D.Louis³

¹⁾STMicroelectronics, 850, rue J.Monnet, BP. 16, 38921 Crolles, France. e-mail : thomas.skotnicki@st.com

²⁾France Telecom R&D, Grenoble, P.B. 98, 38243 Meylan, France ³⁾CEA LETI, rue des Martyrs, 38054 Grenoble, France

⁴⁾L2MP, Université de Provence, 13397 Marseille, France

Abstract

For the first time, both GAA and bulk devices were shown operational on the same chip. Not all issues have been solved yet (gate materials, Raccess) but the first-try results are very encouraging: lon=170µA/µm @1.2V (Tox=20Å), 10mV of DIBL compared with 600mV on bulk devices. Calibrating 2D simulator on this data, the performance of GAA was estimated to 1500µA/µm @1V (Tox=20Å), once having corrected for the R_{access} (~3000Ω) that was due to non-optimal mask layout in this first device realization.