Improved Performance of Ultra-Thin HfO₂ CMOSFETs Using Poly-SiGe Gate

Qiang Lu, Hideki Takeuchi, Xiaofan Meng, Tsu-Jae King, Chenming Hu, Katsunori Onishi[§], Hag-Ju Cho[§] and Jack Lee[§]

Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA Tel: (510) 643-2638, Fax: (510) 642-2636, E-mail: luqiang@eecs.berkeley.edu [§]Dept. of Electrical and Computer Engineering, University of Texas, Austin, TX, USA

Poly-SiGe is investigated as the gate material for CMOS transistors with ultra-thin HfO_2 gate dielectric. Compared with poly-Si, poly-SiGe reduces the gate depletion effect, and also results in thinner EOT of the gate dielectric after 1000°C annealing, with low gate leakage maintained. The Si interface quality is also better than that achieved with surface nitridation, which has been used to reduce EOT. Therefore, the use of poly-SiGe as the gate material is effective for improving the performance of ultra-thin HfO₂ CMOS transistors.