75-word Abstract for VLSI Technology Symposium

Improved Film Growth and Flatband Voltage Control of ALD HfO₂ and Hf-Al-O with n⁺ poly-Si Gates using Chemical Oxides and Optimized Post-Annealing

G.D. Wilk, M.L. Green, M.-Y. Ho[†], B.W. Busch, T.W. Sorsch, F.P. Klemens, B. Brijs[‡], R.B. van Dover, A. Kornblit, T. Gustafsson^{*}, E. Garfunkel^{*}, S. Hillenius, D. Monroe, P. Kalavade, J.M. Hergenrother

Agere Systems, Murray Hill, NJ, USA [†]Natl. Univ.of Singapore, Singapore [‡]IMEC, Heverlee, Belgium ^{*}Rutgers Univ., Piscataway, NJ, USA

Abstract:

We demonstrate for the first time that chemical oxide underlayers ~5Å thick provide improved growth and flatband voltage control of atomic layer deposition (ALD) HfO₂ films compared to thermal oxides. Optimized annealing conditions are shown to greatly reduce both fixed charge and interfacial oxide growth in the high- κ stacks. Extremely small flatband voltage shifts of < 30 mV are achieved, corresponding to a very low fixed charge of $Q_f \sim 2E11 / \text{cm}^2$.