Dynamics of Threshold Voltage Instability in Stacked High-k Dielectrics: Role of the Interfacial Oxide

L.Pantisano¹, E.Cartier^{2,4}, A.Kerber^{3,4}, R.Degraeve¹, M.Lorenzini¹, M.Rosmeulen^{1,5}, G.Groeseneken^{1,5}, H.E.Maes^{1,5}

¹ IMEC, ² IBM, ³ Infineon Technologies, ⁴ International Sematech assignee at IMEC, ⁵ KU Leuven Kapeldreef 75, B-3001 Leuven, Belgium, phone: +32 (16) 281-457, fax: +32 (16) 281-844, e-mail: <u>Luigi.Pantisano@imec.be</u>

Abstract

In this contribution, we compare the V_{TH} -instability in scaled stacks with the trapping behavior of thick HfO₂ layers. We show that a large part of the instability is caused by charging/discharging of HfO₂ bulk defects, independent of the HfO₂ thickness. The interfacial oxide thickness influences the mechanism of charging and discharging of the HfO₂ defects.