A 0.18µm Logic-based MRAM Technology for High Performance Nonvolatile Memory Applications

<u>A.R.Sitaram</u>#, D.W.Abraham*, C.Alof#, D.Braun#, S.Brown*, G.Costrini§, F.Findeis#, M.Gaidis§, E.Galligan*, W.Glashauser#, A.Gupta*, H.Hoenigschmid#, J.Hummel§, S.Kanakasabapathy*, Kasko#, W.Kim#, U.Klostermann#, G.Y.Lee#, R.Leuschner#, K-S. Low#, Yu Lu*, J.Nützel#, E.J.O'Sullivan*, C.Park#, W.Raberg#, R.Robertazzi*, C.Sarma#, J.Schmid#, P.L.Trouilloud*, D.Worledge*, G.Wright*, W.J.Gallagher*, and G.Müller#

Infineon Technologies, § IBM Microelectronics Division, * IBM Watson Research Center MRAM Development Alliance, IBM/Infineon Technologies, IBM Semiconductor Research and Development Center, 2070 State Route 52, Hopewell Junction, NY 12533, USA

2Kb to 128Kb MRAM test chips with cell sizes of $1.4 - 1.7\mu m^2$ were fabricated in a 0.18 μm , 3 level Cu logic based process. Outlined here is a yield analysis of the read operation, which is governed by the MTJ resistance distribution function and a systematic study of the write operation. MRAM functionality, with a checkerboard disturb pattern, was obtained after process optimization. Write endurance tests did not show degradation of the cell properties.