Comparison of sub 1 nm TiN/HfO2 with Poly-Si/HfO₂ gate stacks using scaled chemical oxide interface

W. Tsai^a, L. Ragnarsson^b, P.J. Chen^c, B. Onsia^b, R.J. Carter^b, E. Cartier^d, E. Young^e, M. Green^f ,M. Caymax^b, S. DeGendt^b, and M. Heyns^b

> ^aIntel Corp., ^bIMEC, ^cTexas Instruments, ^dIBM, ^ePhilips, ^fAgere Systems c/o IMEC, Kapeldreef 75, B-3001 Leuven, Belgium ⁺tel.: 32-16-288339, Fax 32-16-281 315, email : tsaiw@imec.be

Chemical oxide scaling by modulating ozone concentration is used to produce SiO_x interfaces with thickness as low as 0.3 nm for HfO₂ dielectrics deposition. Poly NMOS capacitors and conventional self-aligned transistors down to 65nm gate lengths with final EOT ranged from 1.2-1.8 nm were obtained. Sputtered TiN gate on the identical stacks yielded 0.82 nm EOT on NMOS devices using scaled chemical oxide interface with leakage current of 10^{-3} A/cm⁻².