75 Word Abstract Format

Design and Proof of High Quality HfAlO_X Film Formation for MOSCAPs and nMOSFETs through Layer-by-Layer Deposition and Annealing Process

T. Nabatame¹, K. Iwamoto¹, H. Ota², K. Tominaga¹, H. Hisamatsu¹, T. Yasuda², K. Yamamoto¹, W. Mizubayashi², Y. Morita², N. Yasuda¹, M. Ohno¹, T. Horikawa¹, and A. Toriumi^{2, 3}

¹ MIRAI-ASET, AIST Tsukuba West 7, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan

² MIRAI-ASRC, AIST Tsukuba, Ibaraki, Japan

³Department of Materials Science, The University of Tokyo, Japan

We propose a new method for high-k film growth and demonstrate its usefulness in terms of improvements of electrical characteristics of MOSCAPs and nMOSFETs. <u>*Layer-by-Layer Deposition & Annealing*</u> (LL-D&A) is a key concept to reduce impurities incorporated in the film and improve electrical properties for HfAlO_x (Hf:75at.%). The residual carbon was 50% reduced in HfAlO_x films grown through D&A(O₂). The excellent properties of D&A(O₂) HfAlO_x such as a small δV_{FB} less than 0.06V for MOSCAP, a low subthreshold swing of 77mV/dec, a peak mobility of 210cm²/Vs and 10-year lifetime at V_g=-1.9V for poly-Si gate nMOSFET were obtained.