75 Word Abstract

Ultra Low Power 6T-SRAM Chip with Improved Transistor Performance and Reliability by HfO₂-Al₂O₃ High-k Gate Dielectric Process Optimization

Chang-Bong Oh, Hyuk-Ju Ryu, Hee-Sung Kang, Myoung-Hwan Oh, Jong-Ho Lee, Nae-In Lee, Hyun-Woo Lee, Cheol-Hee Jun, Young-Wug Kim, and Kwang-Pyuk Suh

> System LSI Division, Semiconductor Business, Samsung Electronics Co. Ltd. San 24 Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyonggi-Do, 449-711, Korea, Phone: +82-31-209-4984, Fax: +82-31-209-5886, E-mail: <u>ocbong1@samsung.co.kr</u>

Ultra low power 6T-SRAM chips with HfO_2 -Al₂O₃ laminate gate dielectric were successfully demonstrated (bit-cell size = 2.14 µm², EOT = 1.56 nm). Carrier mobility, reliability characteristics of TDDB and HCI, and flicker noise of the thin high-k transistors were improved by deliberate optimizing the conditions of post nitridation, and PDA (O₂ + N₂) temperature. For the thin high-k 6T-SRAM, SNM, cell delay, and chip yield were comparable to those of the oxynitride device while dynamic power was more than 2 orders low.