A 65nm-node CMOS Technology with Highly Reliable Triple Gate Oxide Suitable for power-considered System-on-a-Chip

T. Fukai, Y. Nakahara, M. Terai, S. Koyama*, Y. Morikuni*, T. Suzuki*, M. Nagase*, A. Mineji*, T. Matsuda*,
T. Tamura*, F. Koba*, N. Onoda*, Y. Yamada*, M. Komori*, Y. Kojima*, Y. Yama*,
M. Ikeda*, T. Kudoh*, T. Yamamoto, and K. Imai*

Silicon Systems Research Laboratories, NEC Corporation *Advanced Technology Development Division, NEC Electronics Corporation 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japan Phone: +81-42-779-9930, Fax: +81-42-771-0886, e-mail: t-fukai@aj.jp.nec.com

We have developed 65nm-node CMOS technology for general-purpose system-on-a-chip, in which both standby and active power reductions are strongly required. With highly reliable triple gate oxide and optimized RTA condition, an average standby current can be reduced to one-fifth compared with conventional case. High-speed and low-gate-leakage transistors show on-current (n/p) of 680/240 μ A/ μ m with I_G 13nA/ μ m and I_{OFF} 30nA/ μ m and of 490/175 μ A/ μ m with I_G 0.8nA/ μ m and I_{OFF} 3nA/ μ m, simultaneously. Gate oxide of all the above transistors exhibit tight TDDB distributions.