Abstract

Ge MOS Characteristics with CVD HfO2 Gate Dielectrics and TaN Gate Electrode

W. P. Bai*, N. Lu*, J. Liu*, A. Ramirez**, D. L. Kwong*, D. Wristers**, A. Ritenour[#], L. Lee[#], and D. Antoniadis[#]

 *Microelectronics Research Center, Dept. of Electrical and Computer Engineering, University of Texas, Austin, TX 78712
**Advanced Micro Devices, Austin, TX 78741
[#]Microsystems Technology Laboratory, MIT, Cambridge, MA 02139

In this paper, we report for the first time Ge MOS characteristics with ultra thin rapid thermal CVD HfO₂ gate dielectrics and TaN gate electrode. Using the newly developed pre-gate cleaning and NH₃-based Ge surface passivation, the TaN/HfO₂/Ge gate stack with EOT of 12.9Å exhibits excellent leakage current density of $6mA/cm^2$ @Vg=1V and interface state density (D_{it}) of $8x10^{10}/cm^2$ -eV. Both D_{it} and CV hysteresis of Ge MOS are improved significantly with NH₃ surface treatment. We also study the effects of post-deposition anneal and investigate the conduction mechanism of TaN/HfO₂/Ge gate stack.