Session 15 – TAPA 2
CMOS Platform
Thursday, June 14, 8:05 a.m.
Chairs: W.
Maszara, Globalfoundries
S.
Inaba, Toshiba Corp.
15.1 - 8:05 a.m.
High
Performance Bulk Planar 20nm CMOS Technology for Low Power Mobile Applications, H. Shang, S. Jain, E. Josse*, E.
Alptekin, M.H. Nam**, S.W. Kim^, K.H. Cho^, I. Kim^, Y. Liu**, X. Yang**, X.
Wu**, J. Ciavatti**, N.S. Kim**, R. Vega, L. Kang**, H.V. Meer**, S.
Samavedam**, M. Celik*, S. Soss**, H. Utomo, R. Ramachandran, W. Lai, V.
Sardesai, C. Tran, J.Y. Kim^, Y.H. Park^, W.L. Tan**, T. Shimizu^^, R. Joy**,
J. Strane, K. Tabakman, F. Lalanne*, P. Montanini*, K. Babich**, J.B. Kim^, L.
Economikos, W. Cote, C. Reddy**, M. Belyansky, R. Arndt, U. Kwon, K. Wong, D.
Koli**, D. Leveakis, J.W. Lee^, J. Muncy, S. Krishnan, D. Schepis, X. Chen,
B.D. Kim^, C. Tian, B.P. Linder, E. Cartier, V. Narayanan, G. Northrop, O.
Menut*, J. Meiring, A. Tomas, M. Aminpur, S.H. Park^, K.Y. Weybright, R.
Mann**, A. Mittal**, M. Eller#, S. Lian^, R. Divakaruni, S. Bukofsky, J.D. Kim^,
J. Sudijono**, W. Neumueller#, F. Matsuoka^^, R. Sampson*, IBM
Microelectronics, *STMicroelectronics, **GLOBALFOUNDRIES, ^Samsung Electronics,
^^Toshiba Corporation, #IMC GmbH
In this paper, we present a high performance planar 20nm CMOS
bulk technology for low power mobile (LPM) computing applications featuring an
advanced high-k metal gate (HKMG) process, strain engineering, 64nm metal pitch
& ULK dielectrics. Compared with 28nm low power technology, it offers 0.55X
density scaling and enables significant frequency improvement at lower standby
power. Device drive current up to 2X 28nm at equivalent leakage is achieved
through co-optimization of HKMG process and strain engineering. A fully
functional, high-density (0.081um2 bit-cell) SRAM is reported with a
corresponding Static Noise Margin (SNM) of 160mV at 0.9V. An advanced
patterning and metallization scheme based on ULK dielectrics enables high
density wiring with competitive R-C.
15.2 - 8:30 a.m.
A
22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted
Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors, C. Auth, C. Allen, A. Blattner, D.
Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T.
Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner,
J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S.
Joshi, C. Kenyun, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L.
Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roester, J.
Sanford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, G. Weber, P.
Yashar, K. Zawadzki, K. Mistry, Intel Corp.
A 22nm generation logic technology is described incorporating
fully-depleted tri-gate transistors for the first time. These transistors
feature a 3rd-generation high-k + metal-gate technology and a 5th generation of
channel strain techniques resulting in the highest drive currents yet reported
for NMOS and PMOS. The use of tri-gate transistors provides steep subthreshold
slopes (~70mV/dec) and very low DIBL (~50mV/V). Self-aligned contacts are
implemented to eliminate restrictive contact to gate registration requirements.
Interconnects feature 9 metal layers with ultra-low-k dielectrics throughout the
interconnect stack. High density MIM capacitors using a hafnium based high-k
dielectric are provided. The technology is in high volume manufacturing.
15.3 - 8:55 a.m.
28nm
FDSOI Technology Platform for High-Speed Low-Voltage Digital Applications, N. Planes, O.Weber*, V. Barral*, S.
Haendler, D. Noblet, D. Croain, M. Bocat, P.-O.
Sassoulas, X. Federspiel, A. Cros, A. Bajolet, E. Richard, B. Dumont, P.
Perreau*, D. Petit, D. Golanski, C. Fenouillet-Beranger*, N. Guillot, M. Rafik,
V. Huard, S. Puget, X. Montagner, M.-A. Jaud*, O. Rozeau*, O. Saxod, F.
Wacquant, F. Monsier, D. Barge, L. Pinzelli, M. Mellier, F. Boeuf, F. Arnaud,
M. Haond, STMicroelectronics, *CEA-LETI, MINATEC
For the first time, a full platform using FDSOI technology is
presented. This work demonstrates 32% and 84% speed boost at 1.0V and 0.6V
respectively, without adding process complexity compared to standard bulk
technology. We show how memory access time can be significantly reduced thanks
to high Iread, by keeping competitive leakage values. Yield of ~14Mb SRAM cells
is demonstrated, allowing to measure for the first time Vmin of SRAM arrays.
15.4 - 9:20 a.m.
Advanced
Modeling and Optimization of High Performance 32nm HKMG SOI CMOS for RF/Analog
SoC Applications, S.
Lee, J. Johnson, B. Greene, A. Chou, K. Zhao, M. Chowdhury, J. Sim, A. Kumar, D.
Kim, A. Sutton, S.H. Ku, Y. Liang, Y. Wang, D. Slisher, K. Duncan, P. Hyde, R.
Thoma, J. Deng, Y. Deng, R. Rupani, R. Williams, L. Wagner, C. Wermer, H. Li,
B. Johnson, D. Daley, J.O. Plouchart, S. Narasimha, C. Putnam, E. Maciejewski,
W. Henson, S. Springer, IBM Semiconductor Research and Development Center
We demonstrate advanced modeling and optimization of 32nm
high-K metal gate (HKMG) SOI CMOS technology for high-speed digital and
RF/analog system-on-chip applications. To enable high-performance RF/analog
circuit design, we present challenging device modeling features and their
enhancements. At nominal Lpoly, floating-body NFET and PFET demonstrate peak fT
of 300GHz and fMAX of higher than 350GHz with excellent model-to-hardware
accuracy. For precision analog circuit design, body-contacted (BC) FETs and
various passives are offered, and their performance and modeling accuracy are
co-optimized to push the technology limit and achieve state-of-the-art circuits,
e.g., 28Gb/s serial link transceiver and LC-tank VCO operating at higher than
100GHz.