Tapa III

Time	Honolulu 1	Honolulu 2-3		Тара І		Tapa II				
			ı	7:30 am - 5:00 pm - Registration						
	Circuits SC	Circuits SC	Technology Plenary and Welcome							
05	8:30 am - 5:00 pm	8:30 am - 5:00 pm	8:05 am - 8:35 am							
8:05-10:05			T1-1	8:35 a.m9:20 a.m.						
:05			ARM	Device and Technology Implications of the Internet of Things						
œ			T1-2	9:20 am-10:05 a.m.						
			SONY	Customer Value Creation in the Information Explosion Era						
				T2	: Highlights					
_			T2-1	10:20 am - 10:45 am						
md (SONY	A Novel Curved CMOS Image Sensor Integrated with Imaging System						
-12:00			T2-2	10:45 am - 11:10 am						
			IBM	A 10nm Platform Technology for Low Power and High Performance Application Featuring FINFET Devices with Multi Workfunction Gate Stack on Bulk and SOI						
10:20 am			T2-3	11:10 am - 11:35 am						
):20			STMicro	14nm FDSOI Technology for High Speed and Energy Efficient Applications						
7			T2-4	11:35 am - 12:00 pm						
			IBM	Strained Si1-xGex-on-Insulator PMOS FinFETs with Excellent Sub-Threshold L 10nm Node and Beyond	eakage, Extre	emely-High Short-Channel Performance and Source Injection Velocity for				
				T3: 3D Memory & Emerging Devices I		T4: Advanced CMOS Technology I - III-V Channels				
			T3.1	1:30 p.m1:55 p.m.	T4.1	1:30 p.m1:55 p.m.				
			Macronix	Study of the Impact of Charge-Neutrality Level (CNL) of Grain Boundary Interface Trap on Device Variability and P/E Cycling Endurance of 3D NAND Flash Memory	IMEC	An InGaAs/InP Quantum Well FinFet Using the Replacement Fin Proces Integrated in an RMG Flow on 300mm Si Substrates				
			T3.2	1:55 p.m2:20 p;m	T4.2	1:55 p.m2:20 p;m				
			imec	Laser Thermal Anneal of polysilicon channel to boost 3D memory performance	The Univ. of Tokyo	III-V single structure CMOS by using ultrathin body InAs/GaSb-OI channels on Si				
			T3.3	2:20 p.m2:45 p.m.	T4.3	2:20 p.m2:45 p.m.				
			Tokyo Inst. Tech.	Ultra Thinning down to 4-um using 300-mm Wafer proven by 40-nm Node 2Gb DRAM for 3D Multi-stack WOW Applications	KANC	Sub-100 nm Regrown S/D Gate-Last In0.7Ga0.3As QW MOSFETs with mobility > 5,500 cm2/V-s				
			T3.4	2:45 p.m3:10 p.m.	T4.4	2:45 p.m3:10 p.m.				
md			Seoul Nat'l Univ.	Effect of Traps on Transient Bit-line Current Behavior in Word-line Stacked NAND Flash Memory with Poly-Si Body		High Performance InGaAs-On-Insulator MOSFETs on Si by Novel Direct Wafer Bonding Technology applicable to Large Wafer Size Si				
			Offile.	T5: Focus - Embedded NVM	Tokyo	T6: Process Technology I				
pm-5:30			T5.1	3:25 p.m3:50 p.m.	T6.1	3:25 p.m3:50 p.m.				
1:30 pn			eMemory	A High-Density Logic CMOS Process Compatible Non-Volatile Memory for Sub-28nm Technologies	IBM Research	Simple Gate Metal Anneal (SIGMA) Stack for FinFET Replacement Meta Gate toward 14nm and beyond				
۲			T5.2	3:50 p.m 4:15 p.m.	T6.2	3:50 p.m 4:15 p.m.				
			Qualcomm	Embedded STT-MRAM for Energy-efficient and Cost-effective Mobile Systems	imec	Highly Scalable Bulk FinFET Devices with Multi-VT Options by Conductive Metal Gate Stack Tuning for the 10-nm Node and Beyond				
			T5.3	4:15 p.m4:40 p.m.	T6.3	4:15 p.m4:40 p.m.				
			Toshiba	Flash-Based Nonvolatile Programmable Switch for Low-Power and High- Speed FPGA by Adjacent Integration of MONOS/Logic and Novel	imec	Performance and Reliability of High-Mobility Si0.55Ge0.45 p-Channel FinFETs based on Epitaxial Cladding of Si Fins				
				4:40 p.m5:05 p.m.	T6.4	4:40 p.m5:05 p.m.				
			GLOBALFO UNDRIES	Anti-Fuse Memory Array Embedded in 14nm FinFET CMOS with Novel Selector-Less Bit-Cell Featuring Self-Rectifying Characteristics	Purdue Univ.	III-V CMOS Devices and Circuits with High-Quality Atomic-Layer-Epitaxia La2O3/GaAs Interface				
			T5.5	5:05 p.m5:30 p.m.	T6.5	5:05 p.m5:30 p.m.				
			TDK	Demonstration of fully functional 8Mb perpendicular STT-MRAM chips with sub-5ns writing for non-volatile embedded memories	Tokyo Electron	A Novel Metallic Complex Reaction Etching for Transition Metal and Magnetic Material by Low-temperature and Damage-free Neutral Beam Process for Non-volatile MRAM Device Applications				
	Joint Reception	on - 6:30 pm - 7	:30 pm	Joint Rump Session and Technology Rump Session -	T6.6 Univ. CA,	5:30 p.m5:55 p.m.				
	Come recorping	0.00 piii - 7		8:00 pm - 10:00 pm	Santa Barbara	Record Ion (0.50 mA/µm at VDD = 0.5 V and Ioff = 100 nA/µm) 25 nm- Gate-Length ZrO2/InAs/InAIAs MOSFETs				

	2014 Symposia on VLSI Technology and Circuits June 11th - Wednesday								
Time	ime Honolulu Suite			Tapa I		Tapa II		Tapa III	
				7:30 am - 5:00 pm - R		ion			
		T8: Beyond CMOS		T7: Memory Technology - Emerging Memory		04 84 1941			
	T8.1	8:05 a.m8:30 a.m.	T7.1	8:05 a.m8:30 a.m.		C1: Plenary and Welcome			
8:05-10:05	CEA LETI	First Demonstration of Strained SiGe Nanowires TFETs with lon beyond 700μΑ/μm	Nat'l Taiwan U	Paper Memory by All Printing Technology	8:05 am - 8:35 am	Welcome and Opening Remarks			
	T8.2	8:30 a.m8:55 a.m.	T7.2	8:30 a.m8:55 a.m.	C1.1	8:35 a.m 9:20 a.m.			
	GNC- AIST	Band-to-Band Tunneling Current Enhancement Utilizing Isoelectronic Trap and its Application to TFETs	LEAP	A Highly Scalable STT-MRAM fabricated by a Novel Technique for Shrinking a Magnetic Tunnel Junction with reducing Processing Damage	Micron	DataCenter 2020: Near-memory Acceleration for Data-oriented Applications			
ζ	T8.3	8:55 a.m9:20 a.m.	T7.3	8:55 a.m9:20 a.m.					
0	Peking	Deep Insights into Low Frequency Noise Behavior of Tunnel FETs with Source Junction Engineering	Samsung Electr.	Verification on the extreme scalability of STT-MRAM without loss of thermal stability below 15 nm MTJ cell					
~	T8.4	9:20 a.m.	T7.4	8:55 a.m9:20 a.m.	T1-2	9:20 am- 10:05 a.m.			
	Penn State	Inv. of InxGa1-xAs FinFET Architecture with Varying Indium (x) Concentration and Quantum Confinement	Infineon Tech.	Comprehensive Statistical Investigation of STT-MRAM Thermal Stability	The Univ. Tokyo	Technology Development for Printed LSIs Based on Organic Semiconductors			
	T8.5 L'-John	9:45 a.m10:05 a.m. Time-dependent variation: A new defect-based prediction	T7.5 Micron	9:45 a.m10:05 a.m. A Copper ReRAM Cell for Storage Class Memory Applications					
	Moores methodology		00 1111 10 1111 11						
		C3: Power Mgt for Wireless Sensor Nodes		C2: Ultra-High-Speed Wireline Transceivers		T9: Advance CMOS Technology III-Ge Devices		T10: Design Technology Co-Optimization I	
	C3.1	10:25 a.m10:50 a.m.	C2.1	10:25 a.m10:50 a.m.	T9.1	10:25 a.m10:50 a.m.	T10.1	10:25 a.m10:50 a.m.	
	Univ. of Michigan	Low Power Battery Supervisory Circuit with Adaptive Battery Health Monitor	Fujitsu	A 36 Gbps 16.9 mW/Gbps Transceiver in 20-nm CMOS with 1- tap DFE and Quarter-Rate Clock Distribution	Purdue Univ.	Ge CMOS: Breakthroughs of nFETs (Imax=714 mA/mm, gmax=590 mS/mm) by recessed channel and S/D	G'Foundri	Analog, RF, and ESD Device Challenges and Solutions for 14nm FinFET Technology and Beyond	
⊭	C3.2	10:50 a.m11:15 a.m.	C2.2	10:50 a.m11:15 a.m.	T9.2	10:50 a.m11:15 a.m.	T10.2	10:50 a.m11:15 a.m.	
рш	Texas	A 1.2µW SIMO Energy Harvesting and Power Management	Broadco	A Quad-Channel 112-128 Gb/s Coherent Transmitter in 40 nm	NTU	The demonstration of colossal magneto-capacitance and	Qualcom	Novel Critical Path Aware Transistor Optimization for	
-12:05	Instr./Uni v. of VA	Unit with Constant Peak Inductor Current Control Achieving 84-92% Efficiency Across Wide Input and Output Voltages		CMOS		"negative" capacitance effect with the promising characteristics of Jg-EOT and transistor's performance on Ge (100) n-FETs by the novel magnetic gate stack scheme design		Mobile SoC Device-Circuit Co-design	
am	C3.3	11:15 a.m11:40 a.m.	C2.3	11:15 a.m11:40 a.m.	T9.3	11:15 a.m11:40 a.m.	T10.3	11:15 a.m11:40 a.m.	
10:20 аі	Nt'l Chia Tung	A Direct AC-DC and DC-DC Cross-Source Energy Harvesting Circuit with Analog Iterating-Based MPPT Technique with 72.5% Conversion Efficiency and 94.6%	Rambus	A 40-Gb/s Serial Link Transceiver in 28-nm CMOS Technology	Chongqin g Univ.	Undoped Ge0.92Sn0.08 Quantum Well PMOSFETs on (001), (011) and (111) Substrates with In Situ Si2H6 Passivation: High Hole Mobility and Dependence of Performance on Orientation	imec	Group IV channels for 7nm FinFETs: Performance for SoCs Power and Speed Metrics	
_	C3.4	Tracking Efficiency 11:40 a.m12:05 a.m.	C2.4	11:40 a.m12:05 a.m.	T9.4	11:40 a.m12:05 a.m.	T10.4	11:40 a.m12:05 a.m.	
	HKUST	A 13.56MHz Wireless Power Transfer System with Reconfigurable Resonant Regulating Rectifier and Wireless	Rambus, Univ. of	A 4x40 Gb/s Quad-Lane CDR with Shared Frequency Tracking and Data Dependent Jitter Filtering	KAIST	Demonstration of Ge pMOSFETs with 6 Å EOT using TaN/ZrO2/Zr-cap/n-Ge(100) Gate Stack Fabricated by Novel	Qualcom m	High Performance Mobile SoC Design and Technology Co- Optimization to Mitigate High-K Metal Gate Process	
		Power Control for Implantable Medical Devices	Alberta		Vacuum Annealing and in-situ Metal Capping Method			Induced Variations	
								madeca variations	
ı		C5: Advanced ADC Techniques		T11: 3D Memory & Emerging Devices - 2		C4: 3D Circuits and Applications (JFS)		T12: Devices Physics & Reliability I	
	C5.1	C5: Advanced ADC Techniques 1:30 p.m 1:55 p.m.	T11.1	T11: 3D Memory & Emerging Devices - 2 1:30 p.m 1:55 p.m.	C4.1		T12.1		
	Analog Devices	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range	Macronix	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme	Samsung	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs	IBM	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering	
	Analog Devices C5.2	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m.	Macronix T11.2	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m.	Samsung C4.2	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m.	IBM T12.2	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m.	
	Analog Devices C5.2 Nat'l Tsing Hua U.	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS	Macronix T11.2 Macronix	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications	Samsung C4.2 SK Hynix	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM	IBM T12.2 NIST	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation	
	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m.	Macronix T11.2 Macronix T11.3	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m.	C4.2 SK Hynix	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m.	IBM T12.2 NIST T12.3	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m.	
	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier	Macronix T11.2 Macronix T11.3 Chuo Univ.	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance	C4.2 SK Hynix C4.3 Keio Univ.	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Fan-Out Wafer Level Package	T12.2 NIST T12.3 IBM	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime	
	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m.	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 2:3% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m.	C4.2 SK Hynix C4.3 Keio Univ.	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m.	T12.2 NIST T12.3 IBM	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m.	
md	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier	Macronix T11.2 Macronix T11.3 Chuo Univ.	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance	C4.2 SK Hynix C4.3 Keio Univ.	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Fan-Out Wafer Level Package	T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology	
30 pm	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02f.l/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless	C4.2 SK Hynix C4.3 Keio Univ.	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m.	T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced	
-5:30 pm	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8+1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications	C4.2 SK Hynix C4.3 Keio Univ.	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:56 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Colis with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor	T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02tJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 tJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8+1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 2:3% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Fan-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U.	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02f.l/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 f.l/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-tor-7.5GHz Quadrature Clock Generator Using Digital	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Fan-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28mm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach	
1:30 pm-5:30 pm	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ.	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02f.l/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 f.l/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 2:3% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Fan-Out Wafer Level Packane 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7-SGHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m.	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m.	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA C7.3 Panasoni C	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02f.l/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 f.l/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7-5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Fan-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-ym Pitch Cu RDL	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 imec T13.3 Globalf	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. 15nm-WFIN High-Performance Low-Defectivity Strained-Germanium pFinFETs With Low Temp STI-Last Process 4:15 p.m 4:40 p.m. Advanced RMG module to improve AC/DC performance for 14nm FinFETs and beyond	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA C7.3 Panasoni c C7.4	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks 4:40 p.m 5:05 p.m.	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT C6.4	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications 6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS 4:40 p.m 5:05 p.m.	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC T14.4	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-µm Pitch Cu RDL 4:40 p.m 5:05 p.m.	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 imec T13.3 Globalf T13.4	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. 15mm-WFIN High-Performance Low-Defectivity Strained-Germanium pFinFETs With Low Temp STI-Last Process 4:15 p.m 4:40 p.m. Advanced RMG module to improve AC/DC performance for 14nn FinFETs and beyond 4:40 p.m 5:05 p.m.	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA C7.3 Panasoni c C7.4	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks 4:40 p.m 5:05 p.m. A 400MHz 10Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT C6.4 MIT	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 2:3% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS 4:40 p.m 5:05 p.m. A Monolithically-Integrated Optical Transmitter and Receiver in a Zero-Change 45nm SOI Process	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC T14.4 Georgia Tech	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Colis with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-um Pitch Cu RDL 4:40 p.m 5:05 p.m. Low-loss Silicon Interposer for Three-dimensional System Integration with Embedded Microfluidic Cooling	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 imec T13.3 Globalf T13.4 AIST	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. 3:50 p.m 4:15 p.m. Advanced RMG module to improve AC/DC performance for 14nm FinFETs and beyond 4:40 p.m 5:05 p.m. Lowest Variability SOI FinFETs Having Multiple Vt by Back-Biasing	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA G7.3 Panasoni c C7.4 U C7.5	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02f.l/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 f.l/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks 4:40 p.m 5:05 p.m. A 400MHz 10Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT C6.4 MIT C6.5	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:40 p.m 2:45 p.m. 2:3% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS 4:40 p.m 5:05 p.m. A Monolithically-Integrated Optical Transmitter and Receiver in a Zero-Change 45nm SOI Process 5:05 p.m 5:30 p.m.	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC T14.4 Georgia Tech T14.5	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Packane 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-um Pitch Cu RDL 4:40 p.m 5:55 p.m. Low-loss Silicon Interposer for Three-dimensional System Integration with Embedded Microfluidic Cooling 5:05 p.m 5:30 p.m.	T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 Imec T13.3 Globalf T13.4 AIST T13.5	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. 15nm-WFIN High-Performance Low-Defectivity Strained-Germanium pFinFETs With Low Temp STI-Last Process 4:15 p.m 4:40 p.m. Advanced RMG module to improve AC/DC performance for 14nm FinFETs and beyond 4:40 p.m 5:05 p.m. Lowest Variability SOI FinFETs Having Multiple Vt by Back-Biasing 5:05 p.m 5:30 p.m.	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA C7.3 Panasoni c C7.4 N.Taiwan U C7.5 Oregon	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks 4:40 p.m 5:05 p.m. A 400MHz 10Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique 5:05 p.m 5:30 p.m. A 915MHz, 6Mb/s, 80pJ/b BFSK Receiver with -76dBm	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT C6.4 MIT C6.5 Semi.	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS 4:40 p.m 5:05 p.m. A Monolithically-Integrated Optical Transmitter and Receiver in a Zero-Change 45nm SOI Process 5:05 p.m 5:30 p.m. A 32-bit CPU with Zero Standby Power and 1.5-clock Sleep/2.5-	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC T14.4 Georgia Tech	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-ym Pitch Cu RDL 4:40 p.m 5:05 p.m. Low-loss Silicon Interposer for Three-dimensional System Integration with Embedded Microfluidic Cooling 5:05 p.m 5:30 p.m. A Novel Capacitive-coupled Floating Gate Antenna Protection	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 imec T13.3 Globalf T13.4 AIST T13.5 U of	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. 15nm-WFIN High-Performance Low-Defectivity Strained-Germanium pFinFETs With Low Temp STI-Last Process 4:15 p.m 4:40 p.m. Advanced RMG module to improve AC/DC performance for 14nm FinFETs and beyond 4:40 p.m 5:05 p.m. Lowest Variability SOI FinFETs Having Multiple Vt by Back-Biasing 5:05 p.m 5:30 p.m. Thermally Robust CMOS-aware Ge MOSFETs with High	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA C7.3 Panasoni c C7.4 N.Taiwan U C7.5 Oregon	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02f.l/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 f.l/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks 4:40 p.m 5:05 p.m. A 400MHz 10Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT C6.4 MIT C6.5	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:40 p.m 2:45 p.m. 2:3% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications C6: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS 4:40 p.m 5:05 p.m. A Monolithically-Integrated Optical Transmitter and Receiver in a Zero-Change 45nm SOI Process 5:05 p.m 5:30 p.m.	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC T14.4 Georgia Tech T14.5	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAM/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Packane 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor T14: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-um Pitch Cu RDL 4:40 p.m 5:55 p.m. Low-loss Silicon Interposer for Three-dimensional System Integration with Embedded Microfluidic Cooling 5:05 p.m 5:30 p.m.	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 Imec T13.3 Globalf T13.4 AIST T13.5 U- of Tokyo	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. Jinn-WFIN High-Performance Low-Defectivity Strained-Germanium pFinFETs With Low Temp STI-Last Process 4:15 p.m 4:40 p.m. Advanced RMG module to improve AC/DC performance for 14mm FinFETs and beyond 4:40 p.m 5:05 p.m. Lowest Variability SOI FinFETs Having Multiple Vt by Back-Biasing 5:05 p.m 5:30 p.m. Thermally Robust CMOS-aware Ge MOSFETs with High Mobility at High-carrier Densities on a Single Orientation Ge Substrate	
pm-5:30	Analog Devices C5.2 Nat'l Tsing Hua U. C5.3 Oregon State C5.4 Keio Univ. C7.1 UC Berkeley C7.2 Univ. of CA C7.3 Panasoni c C7.4 N.Taiwan U C7.5 Oregon	1:30 p.m 1:55 p.m. An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range 1:55 p.m 2:20 p.m. A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS 2:20 p.m 2:45 p.m. A 48 fJ/CS, 74 dB SNDR, 87 dB SFDR, 85 dB THD, 30 MS/s Pipelined ADC Using Hybrid Dynamic Amplifier 2:45 p.m 3:10 p.m. 7-bit 0.8-1.2GS/s Dynamic Architecture and Frequency Scaling Subrange ADC with Binary-Search/Flash Live Configuration Technique C7: Sensor Node Radios 3:25 p.m 3:50 p.m. A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas 3:50 p.m 4:15 p.m. Energy-Recycling Integrated 6.78-Mbps Data 6.3-mW Power Telemetry over a Single 13.56-MHz Inductive Link 4:15 p.m 4:40 p.m. An Ultra-Low-Power 2-step Wake-Up Receiver for IEEE 802.15.4g Wireless Sensor Networks 4:40 p.m 5:05 p.m. A 400MHz 10Mbps D-BPSK Receiver with a Reference-less Dynamic Phase-to-Amplitude Demodulation Technique 5:05 p.m 5:30 p.m. A 915MHz, 6Mb/s, 80pJ/b BFSK Receiver with -76dBm	Macronix T11.2 Macronix T11.3 Chuo Univ. T11.4 KAIST C6.1 Intel C6.2 TSMC C6.3 MIT C6.4 MIT C6.5 Semi. Energy	1:30 p.m 1:55 p.m. A Double-density Dual-mode Phase Change Memory Using a Novel Background Storage Scheme 1:55 p.m 2:20 p.m. Towards the Integration of both ROM and RAM Functions Phase Change Memory Cells on a Single Die for System-On-Chip (SOC) Applications 2:20 p.m 2:45 p.m. 23% Faster Program and 40% Energy Reduction of Carbon Nanotube Non-volatile Memory with Over 10^11 Endurance 2:45 p.m 3:10 p.m. Surface-controlled Ultrathin (2 nm) Poly-Si Channel Junctionless FET towards 3D NAND Flash Memory Applications 66: Design with Emerging Technologies 3:25 p.m 3:50 p.m. A 2GHz-to-7.5GHz Quadrature Clock Generator Using Digital Delay Locked Loops for Multi-Standard I/Os in 14nm CMOS 3:50 p.m 4:15 p.m. A 0.7V Resistive sensor with temperature_voltage detection function in 16nm FinFet technologies 4:15 p.m 4:40 p.m. A Monolithically Integrated Chip-to-Chip Optical Link in Bulk CMOS 4:40 p.m 5:05 p.m. A Monolithically-Integrated Optical Transmitter and Receiver in a Zero-Change 45nm SOI Process 5:05 p.m 5:30 p.m. A 32-bit CPU with Zero Standby Power and 1.5-clock Sleep/2.5-clock Wake-up Achieved by Utilizing a 180-nm C-axis Aligned	Samsung C4.2 SK Hynix C4.3 Keio Univ. C4.4 TSMC T14.1 Xilinx T14.2 Skhynix T14.3 TSMC T14.4 Georgia Tech T14.5	C4: 3D Circuits and Applications (JFS) 1:30 p.m 1:55 p.m. Design Technologies for a 1.2V 2.4Gb/s/pin High Capacity DDR4 SDRAM with TSVs 1:55 p.m 2:20 p.m. An Exact Measurement and Repair Circuit of TSV Connections for 128GB/s High-Bandwidth Memory(HBM) Stacked DRAM 2:20 p.m 2:45 p.m. A 352Gb/s Inductive-Coupling DRAW/SoC Interface Using Overlapping Coils with Phase Division Multiplexing and Ultra- Thin Ean-Out Wafer Level Package 2:45 p.m 3:10 p.m. A peripheral switchable 3D stacked CMOS image sensor 114: 3D Systems & Packaging (JFS) 3:25 p.m 3:50 p.m. Applying a Redundancy Scheme to Address Post-assembly Yield Loss in 3D FPGAs 3:50 p.m 4:15 p.m. TSV Technology and Challenges for 3D Stacked DRAM 4:15 p.m 4:40 p.m. A High-Performance Low-Cost Chip-on-Wafer Package with Sub-um Pitch Cu RDL 4:40 p.m 5:05 p.m. Low-loss Silicon Interposer for Three-dimensional System Integration with Embedded Microfluidic Cooling 5:05 p.m 5:30 p.m. A Novel Capacitive-coupled Floating Gate Antenna Protection Design and Its Application to Prevent In-Process Charging	IBM T12.2 NIST T12.3 IBM T12.4 Nat'l Chiao Tung U. T13.1 IBM T13.2 imec T13.3 Globalf T13.4 AIST T13.5 U of	T12: Devices Physics & Reliability I 1:30 p.m 1:55 p.m. Spatial Mapping of Non-Uniform Time-to-Breakdown and Physical Evidence of Defect Clustering 1:55 p.m 2:20 p.m. Device-Level PBTI-induced Timing Jitter Increase in Circuit-Speed Random Logic Operation 2:20 p.m 2:45 p.m. Physics Based PBTI Model for Accelerated Estimation of 10 Year Lifetime 2:45 p.m 3:10 p.m. The Experimental Demonstration of the BTI-Induced Breakdown Path in 28nm High-k Metal Gate Technology CMOS Devices T13: Advanced CMOS Technology II - FinFET 3:25 p.m 3:50 p.m. Bottom Oxidation through STI (BOTS) - A Novel Approach to Fabricate Dielectric Isolated FinFETs on Bulk Substrates 3:50 p.m 4:15 p.m. 15mm-WFIN High-Performance Low-Defectivity Strained-Germanium pFinFETs With Low Temp STI-Last Process 4:15 p.m 4:40 p.m. Advanced RMG module to improve AC/DC performance for 14nm FinFETs and beyond 4:40 p.m 5:05 p.m. Lowest Variability SOI FinFETs Having Multiple Vt by Back-Biasing 5:05 p.m 5:30 p.m. Thermally Robust CMOS-aware Ge MOSFETs with High Mobility at High-carrier Densities on a Single Orientation	

Time	me Honolulu Suite		Тара І		Tapa II			Tapa III	
1		C9: Phase-Locked Loops	7:30 am C8: Signal Processing		m - 5:00 pm - Registration T15: Memory Technology - RRAM I			T16: Focus Session - Interconnect	
	C9.1 8:05 a.m 8:30 a.m.		C8: Signal Processing C8.1 8:05 a.m 8:30 a.m.		T15.1			T16: Focus Session - Interconnect T16.1 8:05 a.m 8:30 a.m.	
		A 2.7GHz to 7GHz Fractional-N LCPLL Utilizing Multimetal		A 6.67mW Sparse Coding ASIC Enabling On-Chip	imec	Role of the Ta scavenger electrode in the excellent switching	Penn State	Impact of Contact and Local Interconnect Scaling on Logic	
	m	Layer SoC Technology in 28nm CMOS	Michigan	Learning and Inference		control and reliability of a scalable low-current operated TiN\Ta2O5\Ta RRAM device		Performance	
	C9.2	8:30 a.m8:55 a.m.	C8.2	8:30 a.m8:55 a.m.	T15.2	8:30 a.m8:55 a.m.	T16.2	8:30 a.m8:55 a.m.	
a.m.	Univ. of Illinois	A 3.7mW 3MHz Bandwidth 4.5GHz Digital Fractional-N PLL with -106dBc/Hz In-band Noise using Time Amplifier Rased TDC	KAIST	A Vocabulary Forest-based Object Matching Processor with 2.07M-vec/s Throughput and 13.3p.l/vector Energy in Full-HD Resolution	NDL/NARLabs	Utilizing Sub-5 nm Sidewall Electrode Technology for Atomic- Scale Resistive Memory Fabrication	Intel	Process Technology Scaling in an Increasingly Interconnect Dominated World	
	C9.3	8:55 a.m9:20 a.m.	C8.3	8:55 a.m9:20 a.m.	T15.3	8:55 a.m9:20 a.m.	T16.3	8:55 a.m9:20 a.m.	
.m-10:05	U. of	A 4.4-5.4GHz Digital Fractional-N PLL Using ΔΣ	Univ. of CA,	A 500MHz Blind Classification Processor for	imec	Tailoring switching and endurance / retention reliability	Tohoku Univ.	What Can We Do About Barrier Layer Scaling to 5 nm Node	
ë.	Illinois	Frequency-to-Digital Converter	LA	Cognitive Radios in 40nm CMOS		characteristics of HfO2 / Hf RRAM with Ti, Al, Si dopants		Technology?	
8:05	C9.4	9:20 a.m9:45 a.m.	C8.4	9:20 a.m9:45 a.m.	T15.4	9:20 a.m9:45 a.m.	T16.4	9:20 a.m9:45 a.m.	
86	TSMC	A 12mW All-Digital PLL Based on Class-F DCO for 4G Phones in 28nm CMOS	Univ. of CA LA	A 13.1GOPS/mW 16-Core Processor for Software- Defined Radios in 40nm CMOS	Stanford Univ.	A 1TnR Array Architecture using a One-Dimensional Selection Device	Tokyo Electron Ltd	In-situ Contact Formation for Ultra-low Contact Resistance NiGe Using Carrier Activation Enhancement (CAE) Techniques for Ge CMOS	
	C9.5	9:45 a.m10:10 a.m.	C8.5	9:45 a.m10:10 a.m.	T15.5	9:45 a.m10:10 a.m.	T16.5	9:45 a.m10:10 a.m.	
	HKUST	A 0.37-to-46.5GHz Frequency Synthesizer for Software-	Mediatek	A 4Kx2K@60fps Multi-standard TV SoC Processor	SK Hynix Inc.	NbO2-based Low Power and Cost Effective 1S1R Switching for	NTU	3D CMOS-MEMS Stacking with TSV-less and Face-to-Face Direct	
		Defined Radios in 65nm CMOS	Inc.	with Integrated HDMI/MHL Receiver		High Density Cross Point ReRAM Application		Metal Bonding	
-	C11.1	C11: Advanced Wireline Techniques	C10.1	C10: Oversampled ADCs	T47.4	T17: Design Technology Co-Opt. II (JFS)	T40.4	T18: Devices Physics and Reliability II	
	Oregon	10:25 a.m10:50 a.m. A 0.8V, 560fJ/bit, 14Gb/s Injection-Locked Receiver with	C10.1 Oregon	10:25 a.m10:50 a.m. A 75dB DR 50MHz BW 3rd Order CT-	T17.1 U. o f Michigan	10:25 a.m10:50 a.m. IoT Design Space Challenges: Circuits and Systems	T18.1 CEA-LETI	10:25 a.m10:50 a.m. Direct measurement of the dynamic variability of 0.120µm2 SRAM	
	State Univ.	Input Duty-Cycle Distortion Tolerable Edge-Rotating 5/4X Sub-Rate CDR in 65nm CMOS	State Univ.	Using VCO-Based Integrators	O. O I Michigan	101 Design Space Challenges. Circuits and Systems	CEA-LETT	cells in 28nm FD-SOI technology	
نہ ا	C11.2	10:50 a.m11:15 a.m.	C10.2	10:50 a.m11:15 a.m.	T17.2	10:50 a.m11:15 a.m.	T18.2	10:50 a.m11:15 a.m.	
-12:05 p.m.	Fujitsu	A 56-Gb/s Receiver Front-End with a CTLE and 1-Tap DFE in 20-nm CMOS	MediaTek	A 23mW, 73dB Dynamic Range, 80MHz BW Continuous-Time Delta-Sigma Modulator in 20nm CMOS	Qualcomm	Chip Package Interaction with Fine Pitch Cu Pillar Bump Using Mass Reflow and Thermal Compression Bonding Assembly Process for 20nm/16nm and Bevond	Univ. of Tokyo	Ultra-Low Voltage (0.1V) Operation of Vth Self-Adjusting MOSFET and SRAM Cell	
	C11.3	11:15 a.m11:40 a.m.	C10.3	11:15 a.m11:40 a.m.	T17.3	11:15 a.m11:40 a.m.	T18.3	11:15 a.m11:40 a.m.	
a. E.	Univ. of	On-Chip Measurement of Data Jitter with Sub-Picosecond	Analog	A 97.3 dB SNR, 600 kHz BW, 31mW Multibit	LEAP	Ultralow-Voltage Design and Technology of Silicon-on-Thin-	Toshiba	Systematic Study of RTN in Nanowire Transistor and Enhanced	
10:20	Toronto	Accuracy for 10Gb/s Multilane CDRs	Devices Inc.	Continuous Time ∆∑ ADC		Buried-Oxide (SOTB) CMOS for Highly Energy Efficient Electronics in IoT Era		RTN by Hot Carrier Injection and Negative Bias Temperature Instability	
	C11.4	11:40 a.m12:05 a.m.	C10.4	11:40 a.m12:05 a.m.	T17.4	11:40 a.m12:05 a.m.	T18.4	11:40 a.m12:05 a.m.	
	HKUST	A 48-mW 18-Gb/s Fully Integrated CMOS Optical Receiver with Photodetector and Adaptive Equalizer	Nat'l Taiwan Univ.	An 8.5MHz 67.2dB SNDR CTDSM with ELD Compensation Embedded Twin-T SAB and Circular TDC-based Quantizer in 90nm CMOS	Qualcomm	Cost and Power/Performance Optimized 20nm SoC Technology for Advanced Mobile Devices	Toshiba	Further Understandings on Random Telegraph Signal Noise through Comprehensive Studies on Large Time Constant Variation and its Strong Correlations to Thermal Activation Energies	
	Executive Panel Discussion and Luncheon - 12:15 p.m 1:30 p.m. (Room to be announced)								
		C13: Medical Imaging		: Non-Volatile and Emerging Memory (JFS)		T19: Emerging Device Technology II		T20: Process Technology II	
	C13.1	1:30 p.m 1:55 p.m.	C12.1	1:30 p.m 1:55 p.m.	T19.1	1:30 p.m 1:55 p.m.	T20.1	1:30 p.m 1:55 p.m.	
			T 12						
		An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation	Toshiba	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU	Imec	In0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications	SEMATECH	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure	
Ė		An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose	Toshiba C12.2	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM	Imec T19.2	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m.		Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m.	
ı p.m3:10 p.m.	C13.2 UC	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation		Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m. 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data	T19.2	In0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications	SEMATECH	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure	
p.m3:10	C13.2 UC	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer- based Reactance Sensors using Injection-Locked	C12.2 Nat'l Tsing	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On	T19.2 SEMATECH T19.3	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of ill-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m.	SEMATECH T20.2	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m.	
3:10	C13.2 UC Berkeley	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping	C12.2 Nat'l Tsing Hua Univ.	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS	T19.2 SEMATECH	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application	SEMATECH T20.2 NTU	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs	
p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U.	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m. 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processino 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of Ill-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less- Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m.	T20.2 NTU T20.3 Toshiba	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m.	
p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m. A 4.771/1.1T NMR compliant wirelessly programmable	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processing 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with	T19.2 SEMATECH T19.3 Semi. Energy Lab	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less- Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube	T20.2 NTU T20.3 Toshiba T20.4 Renesas	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based	
p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:50 p.m 2:20 p.m. 1:50 p.m 2:20 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 3:40 p.m. 1:50 p.m 3:10 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding	T19.2 SEMATECH T19.3 Semi. Energy Lab	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS	T20.2 NTU T20.3 Toshiba	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver	
p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:50 p.m 2:20 p.m. 1:50 p.m 2:20 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 3:10 p.m. 1:5	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ.	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS)	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ.	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS T21: Emerging Device Technology I	T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II	
p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:50 p.m 2:20 p.m. 1:50 p.m 2:20 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 3:40 p.m. 1:50 p.m 3:10 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding	T19.2 SEMATECH T19.3 Semi. Energy Lab	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS	T20.2 NTU T20.3 Toshiba T20.4 Renesas	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver	
p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m. A 4.77/1-1.17 NMR compliant wirelessly programmable implant for bio-artificial pancreas in vivo monitoring C15: Millimeter-Wave & Cellular Radios 3:25 p.m 3:50 p.m. A PVT-Variation Tolerant Fully Integrated 60GHz Transceiver for IEEE 802.11ad	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processing 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 512-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less- Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 Imec	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/Hf(AI)O/Hf/TiN RRAM devices	
1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:55 p.m 2:45 p.m. 1:55 p.m 2:45 p.m. 1:55 p.m 2:45 p.m. 1:55 p.m 3:50 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processing 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 5:12-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of Ill-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less- Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m.	T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and	
1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'i Taiwan Univ. of	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:55 p.m 2:20 p.m. 1:55 p.m 2:20 p.m. 1:55 p.m 2:20 p.m. 1:55 p.m 2:45 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 4:15 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc.	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Peformance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 512-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic There-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging	T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(AI)O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays	
1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:50 p.m 2:25 p.m. 1:50 p.m 2:25 p.m. 1:50 p.m 2:25 p.m. 1:50 p.m 3:20 p.m. 1:50 p.m 3:20 p.m. 1:50 p.m 3:20 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 4:15 p.m. 1:50 p.m 4:40 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A512-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Teschniques 4:15 p.m 4:40 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of ill-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Avis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m.	T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T2: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/Hf(A)/O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m.	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. 3 UCLA	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6:5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m. A 4.77/11.1T NMR compliant wirelessly programmable implant for bio-artificial pancreas in vivo monitoring C15: Millimeter-Wave & Cellular Radios 3:25 p.m 3:50 p.m. A PVT-Variation Tolerant Fully Integrated 60GHz Transceiver for IEEE 802.11ad 3:50 p.m 4:15 p.m. A 94GHz Duobinary Keying Wireless Transceiver in 65nm CMOS 4:15 p.m 4:40 p.m. A Receiver Architecture for Intra-Band Carrier Aggregation	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m. 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 512-kb 1-GHz 28-nm Partially Write-Assisted Dual-rort SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m 4:10 p.m. A 4.68Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m. Advanced 1.1um Pixel CMOS Image Sensor with 3D Stacked Architecture	T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ.	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(A)O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability improvement	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:55 p.m 2:45 p.m. 1:54 p.m. 1:54 p.m. 1:55 p.m 3:45 p.m. 1:55 p.m 3:10 p.m. 1:55 p.m 3:10 p.m. 1:55 p.m 3:50 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan C14.4	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 5:12-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:15 p.m 4:40 p.m 4:68 Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 7:21: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m. Advanced 1.1um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m.	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ.	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(AI)O/HI/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m.	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4 Texas	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:55 p.m 2:45 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 4:15 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 5:05 p.m. 1:50 p.m 4:20 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 5:05 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 5:05 p.m. 1:50 p.m 5:05 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Mavere Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 512-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:16 p.m 4:40 p.m. A 4.68Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m. Early detection and repair of VRT and aging DRAM	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC T21.4 Tokyo Inst.	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of ill-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic There-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 72:1 Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m. Advanced 1.1 um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m. High-Q Inductors on Locally Semi-Insulated Si Substrate by	T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ.	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(AI)O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m. 1T-1R Pillar-Type Topological-switching Random Access Memory	
1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4 Texas	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:55 p.m 2:45 p.m. 1:54 p.m. 1:54 p.m. 1:55 p.m 3:45 p.m. 1:55 p.m 3:10 p.m. 1:55 p.m 3:10 p.m. 1:55 p.m 3:50 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan C14.4 MoSys	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processino 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m. 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 5:12-kb 1-GHz 28-nm Partially Write-Assisted Dual-port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:15 p.m 4:40 p.m. A 4:68Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC T21.4 Tokyo Inst. Tech.	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m. Advanced 1.1um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m Integration of RF CMOS Integrated Circuits	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renessas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ. T22.4 LEAP	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(A)O/H/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m. 1T-1R Pillar-Type Topological-switching Random Access Memory (TRAM) and Data Retention of GeTe/Sb2Te3 Super-Lattice Films	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4 Texas	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. 1:55 p.m 2:45 p.m. 1:50 p.m 2:45 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:10 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 3:50 p.m. 1:50 p.m 4:15 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 5:05 p.m. 1:50 p.m 4:20 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 5:05 p.m. 1:50 p.m 4:40 p.m. 1:50 p.m 5:05 p.m. 1:50 p.m 5:05 p.m.	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan C14.4 MoSys C14.5	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processina 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 5:12-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:15 p.m 4:40 p.m. A 4:86 Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m. Early detection and repair of VRT and aging DRAM bits by margined in-field BIST 5:05 p.m 5:30 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC T21.4 Tokyo Inst. Tech. T21.5	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Annolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 7:21: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m. Advanced 1.1um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m. High-Q Inductors on Locally Semi-Insulated Si Substrate by Helium-3 Bombardment for RF CMOS Integrated Circuits 5:05 p.m 5:30 p.m.	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ. T22.4 LEAP T22.5	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(AI)O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m. 1T-1R Pillar-Type Topological-switching Random Access Memory (TRAM) and Data Retention of GeTe/Sb2Te3 Super-Lattice Films 5:05 p.m 5:30 p.m.	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4 Texas	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m. 4.7/1/11.1T NMR compliant wirelessly programmable implant for bio-artificial pancreas in vivo monitoring C15: Millimeter-Wave & Cellular Radios 3:25 p.m 3:50 p.m. A PVT-Variation Tolerant Fully Integrated 60GHz Transceiver for IEEE 802.11ad 3:50 p.m 4:15 p.m. A 94GHz Duobinary Keying Wireless Transceiver in 65nm CMOS 4:15 p.m 4:40 p.m. A Receiver Architecture for Intra-Band Carrier Aggregation 4:40 p.m 5:05 p.m. A +22dBm IIP3 and 3:5dB NF Wideband Receiver with RF	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan C14.4 MoSys	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processino 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m. 3:10 p.m. Application-Aware Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 5:12-kb 1-GHz 28-nm Partially Write-Assisted Dual-port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:15 p.m 4:40 p.m. A 4:68Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC T21.4 Tokyo Inst. Teyo. T21.5 POSTECH	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1.55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m 4:40 p.m. Advanced 1.1um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m. High-Q Inductors on Locally Semi-Insulated Si Substrate by Helium-3 Bombardment for RF CMOS Integrated Circuits 5:05 p.m 5:30 p.m. Electrical and Reliability Characteristics of a Scaled (-30nm) Tunnel Barrier Selector (W/Ta2O5/TaOx/TiO2/TiN) with Excellent Performance (JMAX > 107A/cm2)	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renessas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ. T22.4 LEAP	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(A)O/H/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m. 1T-1R Pillar-Type Topological-switching Random Access Memory (TRAM) and Data Retention of GeTe/Sb2Te3 Super-Lattice Films	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4 Texas	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m. 4.7/1/11.1T NMR compliant wirelessly programmable implant for bio-artificial pancreas in vivo monitoring C15: Millimeter-Wave & Cellular Radios 3:25 p.m 3:50 p.m. A PVT-Variation Tolerant Fully Integrated 60GHz Transceiver for IEEE 802.11ad 3:50 p.m 4:15 p.m. A 94GHz Duobinary Keying Wireless Transceiver in 65nm CMOS 4:15 p.m 4:40 p.m. A Receiver Architecture for Intra-Band Carrier Aggregation 4:40 p.m 5:05 p.m. A +22dBm IIP3 and 3:5dB NF Wideband Receiver with RF	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan C14.4 MoSys C14.5	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processing 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Marer Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 512-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:16 p.m 4:40 p.m. A 4:68Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m. Early detection and repair of VRT and aging DRAM bits by margined in-field BIST 5:05 p.m 5:30 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC T21.4 Tokyo Inst. Tech. T21.5 POSTECH	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1:55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of ill-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m. Advanced 1.1 um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m. High-Q Inductors on Locally Semi-Insulated Si Substrate by Helium-3 Bombardment for RF CMOS Integrated Circuits 5:50 p.m 5:05 p.m. Electrical and Reliability Characteristics of a Scaled (~30nm) Tunnel Barrier Selector (W/Ta2O5/TaOx/TiO2/TiN) with Excellent Performance (JMAX > 107A/cm2) 5:30 p.m 6:05 pm	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ. T22.4 LEAP T22.5	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/Hf(AI)O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m. 1T-1R Pillar-Type Topological-switching Random Access Memory (TRAM) and Data Retention of GeTe/Sb2Te3 Super-Lattice Films 5:05 p.m 5:30 p.m.	
- 6:05 p.m. 1:30 p.m3:10	C13.2 UC Berkeley C13.3 Nanyang Tech. U. C13.4 Univ. of Florida C15.1 Panasoni c C15.2 Nat'l Taiwan Univ. C15.3 UCLA C15.4 Texas A&M U.	An Impedance and Multi-wavelength Near-infrared Spectroscopy IC for Non-invasive Blood Glucose Estimation 1:55 p.m 2:20 p.m. A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping 2:20 p.m 2:45 p.m. A 64x64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing 2:45 p.m 3:10 p.m. 4.7/1/11.1T NMR compliant wirelessly programmable implant for bio-artificial pancreas in vivo monitoring C15: Millimeter-Wave & Cellular Radios 3:25 p.m 3:50 p.m. A PVT-Variation Tolerant Fully Integrated 60GHz Transceiver for IEEE 802.11ad 3:50 p.m 4:15 p.m. A 94GHz Duobinary Keying Wireless Transceiver in 65nm CMOS 4:15 p.m 4:40 p.m. A Receiver Architecture for Intra-Band Carrier Aggregation 4:40 p.m 5:05 p.m. A +22dBm IIP3 and 3:5dB NF Wideband Receiver with RF	C12.2 Nat'l Tsing Hua Univ. C12.3 Phison Ele./ NCTU C12.4 Chuo Univ. C14.1 Renesas Electronics C14.2 ARM Inc. C14.3 Univ. of Michigan C14.4 MoSys C14.5 Intel	Highly Reliable and Low-Power Nonvolatile Cache Memory with Advanced Perpendicular STT-MRAM for High-Performance CPU 1:55 p.m 2:20 p.m. ReRAM-based 4T2R Nonvolatile TCAM with 7x NVM-Stress Reduction, and 4x Improvement in Speed-WordLength-Capacity for Normally-Off Instant-On Filter-Based Search Engines Used in Big-Data Processing 2:20 p.m 2:45 p.m. A Low Power and Ultra High Reliability LDPC Error Correction Engine with DSP for Embedded NAND Flash Controller in 40nm COMS 2:45 p.m 3:10 p.m. Application-Marer Solid-State Drives (SSDs) with Adaptive Coding C14: SRAM and DRAM (JFS) 3:25 p.m 3:50 p.m. A 512-kb 1-GHz 28-nm Partially Write-Assisted Dual-Port SRAM with Self-Adjustable Negative Bias Bitline 3:50 p.m 4:15 p.m. Low VMIN 20nm Embedded SRAM with Multi-voltage Wordline Control based Read and Write Assist Techniques 4:16 p.m 4:40 p.m. A 4:68Gb/s Belief Propagation Polar Decoder with Bit-Splitting Register File 4:40 p.m 5:05 p.m. Early detection and repair of VRT and aging DRAM bits by margined in-field BIST 5:05 p.m 5:30 p.m.	T19.2 SEMATECH T19.3 Semi. Energy Lab T19.4 Stanford Univ. T21.1 Micron T21.2 Nat'l U. of Singapore T21.3 TSMC T21.4 Tokyo Inst. Teyo. T21.5 POSTECH	in0.53Ga0.47As Quantum-Well MOSFET with Source/Drain Regrowth for Low Power Logic Applications 1.55 p.m 2:20 p.m. Electrostatics and Performance Benchmarking using all types of III-V Multi-gate FinFETs for sub 7nm Technology Node Logic Application 2:20 p.m 2:45 p.m. Scaling to 50-nm C-Axis Aligned Crystalline In-Ga-Zn Oxide FET with Surrounded Channel Structure and Its Application for Less-Than-5-nsec Writing Speed Memory 2:45 p.m 3:10 p.m. Monolithic Three-Dimensional Integration of Carbon Nanotube FETs with Silicon CMOS 721: Emerging Device Technology I 3:25 p.m 3:50 p.m. Integration of Silicon Photonics in Bulk CMOS 3:50 p.m 4:15 p.m. Germanium-Tin on Silicon Avalanche Photodiode for Short-Wave Infrared Imaging 4:15 p.m 4:40 p.m 4:40 p.m. Advanced 1.1um Pixel CMOS Image Sensor with 3D Stacked Architecture 4:40 p.m 5:05 p.m. High-Q Inductors on Locally Semi-Insulated Si Substrate by Helium-3 Bombardment for RF CMOS Integrated Circuits 5:05 p.m 5:30 p.m. Electrical and Reliability Characteristics of a Scaled (-30nm) Tunnel Barrier Selector (W/Ta2O5/TaOx/TiO2/TiN) with Excellent Performance (JMAX > 107A/cm2)	SEMATECH T20.2 NTU T20.3 Toshiba T20.4 Renesas Electronics T22.1 imec T22.2 Peking U T22.3 Fudan Univ. T22.4 LEAP T22.5	Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure 1:55 p.m 2:20 p.m. The demonstration of D-SMT stressor on Si and Ge n-FinFETs 2:20 p.m 2:45 p.m. Design Methodology of Tri-Gate Poly-Si MOSFETs with 10nm Nanowire Channel to Enhance Short-Channel Performance and Reduce Vth & Id Variability 2:45 p.m 3:10 p.m. Enhanced Drivability of High-Vbd Dual-oxide-based Complementary BEOL-FETs for Compact On-chip Pre-driver T22: Memory Technology: RRAM II 3:25 p.m 3:50 p.m. Lateral and vertical scaling impact on statistical performances and reliability of 10nm TiN/H(AI)O/Hf/TiN RRAM devices 3:50 p.m 4:15 p.m. Towards High-Speed, Write-Disturb Tolerant 3D Vertical RRAM Arrays 4:15 p.m 4:40 p.m. Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement 4:40 p.m 5:05 p.m. 1T-1R Pillar-Type Topological-switching Random Access Memory (TRAM) and Data Retention of GeTe/Sb2Te3 Super-Lattice Films 5:05 p.m 5:30 p.m.	

Tapa III

Honolulu Suite		Tapa I		Tapa II
			am - 5:00) pm Registration
		C16: SOC Circuits & Processors		C17: Image Sensors
	C16.1	8:05 a.m 8:30 a.m.	C17.1	8:05 a.m 8:30 a.m.
	Intel	340mV-1.1V, 289Gbps/W, 2090-gate NanoAES Hardware Accelerator with Area-optimized Encrypt/Decrypt GF(2 ⁴) ² Polynomials in 22nm tri-gate CMOS	Univ. of Michigan	A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting
	C16.2	8:30 a.m8:55 a.m.	C17.2	8:30 a.m8:55 a.m.
	Columbia	R-Processor: 0.4V Resilient Processor with a Voltage-Scalable and	Univ.	A 65-nm 0.5-V 17-pJ/frame.pixel DPS CMOS Image Sensor for Ultra-Low-
	Univ.	Low-Overhead In-Situ Error Detection and Correction Technique in 65nm CMOS	Catholique de Louvain	Power SoCs achieving 40-dB Dynamic Range
	C16.3	8:55 a.m9:20 a.m.	C17.3	8:55 a.m9:20 a.m.
		A 7.11mJ/Gb/Query Data-Driven Machine Learning Processor (D2MLP) for Big Data Analysis and Applications	Cornell U.	An On-chip 72×60 Angle-Sensitive Single Photon Image Sensor Array for Lens Less Time-Resolved 3-D Fluorescence Lifetime Imaging,
	C16.4	9:20 a.m9:45 a.m.	C17.4	9:20 a.m9:45 a.m.
	Kobe Univ.	A Local EM-Analysis Attack Resistant Cryptographic Engine with Fully- Digital Oscillator-Based Tamper-Access Sensor	Univ. of Edinburgh	320x240 Oversampled Digital Single Photon Counting Image Sensor
	C16.5	9:45 a.m10:10 a.m.	C17.5	9:45 a.m10:10 a.m.
	MIT	A Self-Aware Microprocessor SoC using Energy Monitors Integrated into DC/DC Converters for System Adaptation	Renesas Electr.	A 3.7M-pixel 1300-fps CMOS Image Sensor with 5.0G-Pixel/s High-Speed Readout Circuit
		C18: Biomedical Circuits & Systems		C19: DACs and Mixed-Signal Techniques
	C18.1	10:25 a.m10:50 a.m.	C19.1	10:25 a.m10:50 a.m.
	UC	A 4.78mm2 Fully-Integrated Neuromodulation SoC Combining 64	Univ. of	A 12-bit Hybrid DAC with 8GS/s Unrolled Pipeline Delta-Sigma Modulator
	Berkeley	Acquisition Channels with Digital Compression and Simultaneous Dual Stimulation	CA	achieving >75dB SFDR over 500MHz in 65nm CMOS
	C18.2	10:50 a.m11:15 a.m. A 266nW Multi-Chopper Amplifier with 1.38 Noise Efficiency Factor for	C19.2	10:50 a.m11:15 a.m.
	U. of Michigan	Neural Signal Recording,	MediaTek	A 960MS/s DAC with 80dB SFDR in 20nm CMOS for Multi-Mode Baseband Wireless Transmitter
	C18.3 CA Inst. of	11:15 a.m11:40 a.m. An Implantable Continuous Glucose Monitoring Microsystem in	C19.3 Broadcom	11:15 a.m11:40 a.m. A 3nV/√Hz Programmable Gain/BW Mixed-Signal 4th Order Chebyshev High-
	Tech	0.18µm CMOS,	Bioaucom	Pass Filter for ADSL/VDSL Analog Front End in 28nm CMOS
	C18.4	11:40 a.m12:05 a.m.	C19.4	11:40 a.m12:05 a.m.
	U. of Washingto n	A Single-chip Encrypted Wireless 12-Lead ECG Smart Shirt for Continuous Health Monitoring,	Univ. of Twente	A 110mW, 0.04mm2, 11GS/s 9-bit interleaved DAC in 28nm FDSOI with >50dB SFDR across Nyquist
		C20: DC/DC Buck Converters		C21: Capacitive Transducers
	C20.1	1:30 p.m 1:55 p.m.	C21.1	1:30 p.m 1:55 p.m.
	Intel	A 500 MHz, 68% efficient, Fully On-Die Digitally Controlled Buck Voltage Regulator on 22nm Tri-Gate CMOS	Princeton Univ.	An ASIC for Readout of Post-Processed Thin-film MEMS Resonators by Employing Capacitive Interfacing and Active Parasitic Cancellation
	C20.2	1:55 p.m 2:20 p.m.	C21.2	1:55 p.m 2:20 p.m.
	Oregon State Univ.	A 10-25MHz, 600mA Buck Converter using Time-Based PID Compensator with 2μA/MHz Quiescent Current, 94% Peak Efficiency, and 1MHz BW	Univ. of Michigan	15.4b Incremental Sigma-Delta Capacitance-to-Digital Converter with Zoom-in 9b Asynchronous SAR
	C20.3	2:20 p.m 2:45 p.m.	C21.3	2:20 p.m 2:45 p.m.
		A 40-MHz 85.8%-Peak-Efficiency Switching-Converter-Only Dual- Phase Envelope Modulator for 2-W 10-MHz LTE Power Amplifier	Samsung Elect	A Fully-Differential Capacitive Touch Controller with Input Common-Mode Feedback for Symmetric Display Noise Cancellation
	C20.4	2:45 p.m 3:10 p.m.	C21.4	2:45 p.m 3:10 p.m.
	Nat'l Chiao Tung Univ	±3% Voltage Variation and 95% Efficiency 28nm Constant On-Time Controlled Step-down Switching Regulator Directly Supplying to Wi-Fi Systems	MIT	A Column-Row-Parallel ASIC Architecture for 3D Wearable / Portable Medical Ultrasonic Imaging
		C22: Frequency Generation & Measurement Techniques		C23: High-Speed SAR ADCs
	C22.1	3:25 p.m 3:50 p.m.		3:25 p.m 3:50 p.m.
			C23 1	
	Univ. of Illinois	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement	C23.1 imec	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS
	Univ. of Illinois C22.2	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement 3.50 p.m 4:15 p.m.	imec C23.2	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS 3:50 p.m 4:15 p.m.
	Univ. of Illinois C22.2 Samsung Electr	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement 3:50 p.m 4:15 p.m. A 0.63ps, 12b, Synchronous Cyclic TDC using a Time Adder for Onchip Jitter Measurement of a SoC in 28nm CMOS Technology	imec C23.2 Nat'l Taiwan U	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS 3:50 p.m 4:15 p.m. A 12-bit 210-MS/s 5.3-mW Pipelined-SAR ADC with a Passive Residue Transfer Technique
	Univ. of Illinois C22.2 Samsung Electr C22.3 Univ. of	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement 3:50 p.m 4:15 p.m. A 0.63ps, 12b, Synchronous Cyclic TDC using a Time Adder for On-	imec C23.2 Nat'l	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS 3:50 p.m 4:15 p.m. A 12-bit 210-MS/s 5.3-mW Pipelined-SAR ADC with a Passive Residue
	Univ. of Illinois C22.2 Samsung Electr C22.3 Univ. of Michigan	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement 3:50 p.m 4:15 p.m. A 0.63ps, 12b, Synchronous Cyclic TDC using a Time Adder for Onchip Jitter Measurement of a SoC in 28nm CMOS Technology 4:15 p.m 4:40 p.m. An N-path Filter Enhanced Low Phase Noise Ring VCO	C23.2 Nat'l Taiwan U C23.3 Broadcom	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS 3:50 p.m 4:15 p.m. A 12-bit 210-MS/s 5.3-mW Pipelined-SAR ADC with a Passive Residue Transfer Technique 4:15 p.m 4:40 p.m. An 11.5-ENOB 100-MS/s 8mW Dual-Reference SAR ADC in 28nm CMOS
	Univ. of Illinois C22.2 Samsung Electr C22.3 Univ. of Michigan C22.4	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement 3:50 p.m 4:15 p.m. A 0.63ps, 12b, Synchronous Cyclic TDC using a Time Adder for Onchip Jitter Measurement of a SoC in 28nm CMOS Technology 4:15 p.m 4:40 p.m. An N-path Filter Enhanced Low Phase Noise Ring VCO	C23.2 Nat'l Taiwan U C23.3 Broadcom C23.4	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS 3:50 p.m 4:15 p.m. A 12-bit 210-MS/s 5.3-mW Pipelined-SAR ADC with a Passive Residue Transfer Technique 4:15 p.m 4:40 p.m. An 11.5-ENOB 100-MS/s 8mW Dual-Reference SAR ADC in 28nm CMOS 4:40 p.m 5:05 p.m.
	Univ. of Illinois C22.2 Samsung Electr C22.3 Univ. of Michigan	A 4.25GHz-4.75GHz Calibration-free Fractional-N Ring PLL Using Hybrid Phase/Current-mode Phase Interpolator With 13.2dB Phase noise Improvement 3:50 p.m 4:15 p.m. A 0.63ps, 12b, Synchronous Cyclic TDC using a Time Adder for Onchip Jitter Measurement of a SoC in 28nm CMOS Technology 4:15 p.m 4:40 p.m. An N-path Filter Enhanced Low Phase Noise Ring VCO	C23.2 Nat'l Taiwan U C23.3 Broadcom	A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS 3:50 p.m 4:15 p.m. A 12-bit 210-MS/s 5.3-mW Pipelined-SAR ADC with a Passive Residue Transfer Technique 4:15 p.m 4:40 p.m. An 11.5-ENOB 100-MS/s 8mW Dual-Reference SAR ADC in 28nm CMOS