High performance In_{0.53}Ga_{0.47}As FinFETs fabricated on 300 mm Si substrate

M. L. Huang, S. W. Chang, M. K. Chen, Y. Oniki, H. C. Chen, C. H. Lin, W. C. Lee, C. H. Lin, M. A.

Khaderbad, K. Y. Lee, Z. C. Chen, P. Y. Tsai, L. T. Lin, M. H. Tsai, C. L. Hung, T. C. Huang,

Y. C. Lin, Y.-C. Yeo, S. M. Jang, H. Y. Hwang, Howard C.-H. Wang, and Carlos H. Diaz

Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu 300, Taiwan

Phone: +886-3-5636688 ext. 7222247, E-mail: linchzzz@tsmc.com

Abstract

In_{0.53}Ga_{0.47}As FinFETs are fabricated on 300 mm Si substrate. High device performance with good uniformity across the wafer are demonstrated (SS=78 mV/dec., I_{on}/I_{off}~10⁵, DIBL=48 mV/V, g_m=1510 μ S/ μ m, and I_{on}=301 μ A/ μ m at V_{ds}=0.5V with L_g=120 nm device). The extrinsic field effect mobility of 1731 cm²/V-s with EOT~0.9nm is extracted by split-CV. Devices fabricated on 300mm Si have shown similar performances in SS and I_{on} when benchmarked with device fabricated on lattice-matched InP substrate. In addition, an I_{on} of 44.1 μ A per fin is observed on the fin-height of 70 nm and the fin-width of 25nm, which is among the highest values reported for In_{0.53}Ga_{0.47}As FinFETs to the best of our knowledge.

Introduction

High electron mobility III-Vs semiconductors are promising for high-performance and low-power logic applications beyond Si channel. Hetero-epitaxial of high quality III-V on large scale Si platform and reducing the trap density in HK/III-V interface are critical challenges for fabricating high performance devices. Besides, in order to increase transistor density and improve electrostatic control of the channel, 3D architecture such as fins and nanowire are becoming essential in future applications. In this work, high quality $In_{0.53}Ga_{0.47}As$ channel is epitaxially grown on 300 mm Si substrate. The fin structures are further fabricated using the combinations of dry and wet etching processes. The transfer/output characteristics, L_g scaling properties, and carrier transport of $In_{0.53}Ga_{0.47}As$ FinFET at various fin-width are demonstrated.

Device Fabrication

The process flow of $In_{0.53}Ga_{0.47}As$ FinFET devices is shown in Fig. 1. The InGaAs channel is directly grown on 300 mm Si(100) substrate via a metamorphic III-V buffer by MOCVD [1]. The fin is fabricated by dry and wet etching of InGaAs channel. Fig.2 shows the FinFET with fin height (FH) of 45 nm and fin width (FW) of ~15 nm. Those characteristics indicate a well-controlled fin-etching process. After dummy gate formation, the heavily doped n⁺InGaAs is epitaxial grown on the source/drain (S/D) regions by MOCVD to wrap around the fin. The dummy gate is then removed for gate stack deposition. The S/D contact metal and the top metal are then patterned and deposited on the wafer.

Results and Discussion

The transfer characteristics of InGaAs planar ultra-thin body (UTB, channel thickness=10nm) and Fin- (FH=45nm) FET with EOT~0.9nm and L_g=120nm at V_{ds}=0.5V are compared. The subthreshold swing (SS), drain induced barrier lowing (DIBL), peak transconductance (g_m), and drain current (I_{ds}) as function of FW at V_{ds}=0.5 V are shown in Fig. 3. By narrowing the FW from 50 to 20 nm, the gate control can be significantly improved. Once the FW < 30nm, FinFET exhibits better electrostatic control of the channel than the UTB-FET.

The typical transfer characteristics of $L_g = 1 \mu m$ and 120 nm devices (FW=25,FH=45 nm) demonstrate similar subthreshold behavior (Fig. 4 (a) and (b)) indicating the excellent electrostatic control of the FinFET. SS of 78 and 84 mV/dec.. are obtained at V_{ds} =0.05V and 0.5V for L_g =120 nm. DIBL and I_{on}/I_{off} are ~48 mV/V and of ~10⁵, respectively. The device with $L_g=120$ nm exhibits $g_m=1510 \ \mu\text{S}/\mu\text{m}$ and $I_{on}=301 \ \mu\text{A}/\mu\text{m}$ at $V_{ds}=0.5V$ with $I_{off}=100$ nA/µm (Fig. 5). Besides, a good output characteristics is exhibited in L_g=120nm devices (Fig. 6). Moreover, the I_{on} is gained from 34.6 to 44.1 uA/fin as the FH increased from 45 to 70 nm, as exhibited in Fig. 7. Device performances, including SS, DIBL, g_m, and I_{ds} scale well with L_{g} , as shown in Fig. 8. In addition, the good uniformity with high $g_m(mean)$ of 1514 μ S/ μ m (STD=1.9%) and low SS(mean) of 87 mV/dec (STD=3.3%) for L_g=120nm device across a wafer demonstrates the manufacturability of III-V FET on 300 mm Si substrate, as shown in Fig. 9.

Fig. 10 shows the R_{on} vs. L_g plot. The external resistance (R_{ext}) of 136±25 ohm-um is extracted by extrapolation of R_{on} vs. L_g plot. The specific contact resistivity (ρ_c) and contact resistance (R_c) of the metal-S/D junction and S/D sheet resistance (R_{sh}) are determined by transmission line measurement (TLM) method. The ρ_c , R_c , and R_{sh} is 1.0±0.2 x10⁻⁸ Ω -cm², 5.3±1.5 Ω -um, and 28.4±4 Ω -um, respectively (Fig. 11). The carrier transport and gate-control characteristics are measured by split C-V method. Fin-FET demonstrates faster accumulation/depletion/inversion transition features than planar UTB-FET (Fig. 12). The extracted field-effect mobility (μ_{FE}) for In_{0.53}Ga_{0.47}As UTB- and Fin- FET with EOT=0.9nm is 2126 and 1731 cm²/V-s, respectively, as depicted in Fig. 13. Benchmarking of gm and Ion vs. SS for In_{0.53}Ga_{0.47}As Fin- and gate-all-around (GAA) FET at V_{ds} =0.5V and V_{gs} =0.5V with I_{off} =100nA/µm are shown in Fig. 14. Device performances are in similar trend with previously reported devices fabricated on InP substrate. The I_{on} of 44.1 uA per fin in our In_{0.53}Ga_{0.47}As FinFET on 300mm Si is among the highest values reported for In_{0.53}Ga_{0.47}As 3D FET on any known substrate materials.

Conclusions

High performance $In_{0.53}Ga_{0.47}As$ FinFETs have been fabricated on 300 mm Si substrate. Systematic study of materials properties, dimensions effect, and devices characteristics exhibits that III-V FinFETs on 300 mm Si is a promising candidate for new generation high-performance and low-power device applications.

References

- [1] M. L. Huang et. al., VLSI Tech. Dig., pp T204-205, 2015
- [2] N. Waldron et. al, IEDM Tech. Dig., pp 31.1.1-4, 2015
- [3] T.-W. Kim et. al., IEDM Tech. Dig., pp 16.3.1-4, 2013
- [4] M. Radosavljevic et. al., IEDM Tech. Dig., pp 33.1.1-4, 2011
- [5] J. J. Gu et. al., IEDM Tech. Dig., pp 27.6.1-4, 2012

InGaAs FinFET fabrication. Fin dimension was controlled by InGaAs epi-layer thickness and dry/wet etch conditions.

Fig. 1 Process flow for the

Fig. 2 (a) Top view SEM and (b) cross-sectional TEM images of the InGaAs FinFET.

Fig. 3 (a) I_{ds} - V_{gs} plot of UTB-FET (T=10nm) and FinFET at V_{ds} =0.5V. (b) SS, (c) DIBL, (d) g_m, and (e) I_{ds} vs. FW for FinFET and UTB-FET.

.=290

(Ω-um

0.1 0.2 0.3 0.4

=120nm device.

0

600

₁₀ (mu/Aul) _{ab}

200

(mµ/Aµ)

_

200

L_a=0.12um, FH=45nm

V_{ds} (V)

Fig. 6 I_{ds} -V_{ds} of L_g

V_{gs}=0.7V

0.6V

0.5\

0.4

0.3

0.21

0.5

100

80

60

40

20

-0.1

0.1 0.3 0.5 0.7

V_{gs} (V)

Fig. 7 Ion characteristics

with FW=45 and 70 nm

of Lg=120nm device.

(hA/fin)

_÷

0.5V

0.05V

-FH=70 nm

FH=45 nm

Fig. 4 Transfer characteristics of (a) Lg=1µm and (b) $L_g=120$ nm devices with FW=25 and FH=45nm.

Fig. 8 (a) SS, (b) DIBL, (c) gm and (d) Ion vs. various Lg.

Fig. 5 g_m -I $_{gs}$ and I $_{ds}$ -V $_{gs}$ of L_g=120nm device at V_{ds}=0.5 and 0.05V, respectively.

V_{gs} (V)

L_g=0.12um

=1510 µs/µm

g_m,peak

0.5V

0.05V

1600

1200

800

400

-0.1 0.1 0.3 0.5 0.7

Mean = 87 mV/dec., STD = 3.3 % Mean = 1514 uS/um, STD = 1.9 %

Fig. 9 The (a) g_m and (b) SS map across 300mm wafer, respectively. The good uniformity of L_g =120nm devices with high g_m(mean) of 1514 µS/µm (STD=1.9%) and low SS(mean) of 87 mV/dec. (STD=3.3 %), respectively.

Fig. 12 Split C-V characteristics of planar-(T=50nm), UTB- (T=10nm), and Fin- (FW=25 nm) FET.

Fig. 13 Extracted field effect mobility (μ_{FE}) vs. N_s for UTB-, and Fin-FET.

Fig. 14 Benchmarking of $g_m\left(a\right)$ and $I_{on}\left(b,c\right)$ vs. SS of $In_{0.53}Ga_{0.47}As$ Fin- and nanowire- FET at $V_{ds}=0.5V$ and $V_{gs}=0.5V$ with $I_{off}=100$ nA/um. The g_m and Ion data are selected from device FW=20-50 nm.