2022 6 VI CI Technol d Circuite (Sunday, June 11) .

			2023 Syr	nposium	on VLSI Technol	ogy and Circuits (Sunday, J	une 11)					
Time	Suzaku III	Suzaku II	Suzaku I Shunju III Shunju II		Shunju I	Le Bois		La Cigogne	Le Cygne			
8:00-20:00	·		·		· ·							
8:30-18:30					8:30-18:30 20	23 Silicon Nanoelectronics Workshop (Day 1)						
17:30-19:15									Workshop 1			
20:00-21:45	Workshop 3		Workshop 2				Workshop 4		Workshop 5	Workshop 6		
Workshop 1: Open Source PDKs and EDAs, Community Experiences toward Democratization of Chip Design [La Cigogne] Design Experience: "The Journey of Two Novice LSI Enthusiasts: Tape-Out of CPU+RAM in Just One Month", K. Uchiyama* and Y. Azuma**, *Univ. of Electro-			EUV and High NA EUV Mask Challenges, N. Ha High NA EUV Exposure Tool Implications to Ch Research Resolution Capability and Stitching of Feature	nip and Mask L	ayouts, D. Schmidt, IBM	Workshop 4: The Deployment of Ma Methodology (MSCO) to Enable Rapid P Technology Develo Materials to Systems Co-Optimization: Accel	PPACt Assessment for Advanced Node opment [Le Bois]	G. Bur Challe	Benchmarking Novel AI Accelerators : Striving to Be Both Fair and Comprehensive, G. Burr, IBM Research Challenges in Designing and Evaluating Neural Processing Units, JS. Park, Samsung Electronics Co., Ltd.			
	ons and **Univ. of Tsukuba 1000 Open Source Custom Designs in Tw	o Years, M. Kassem, Efabless	E. van Setten, ASML Workshop 3: Towards Functional Back	side · What's	Next After Backside	B. Ayyagari-Sangamalli, Applied Materials, Ir Transition from Gate-All-Around to Stacked		Workshop 6: 3D Image Sensor [Le Cygne]				
	Open Source PDK: Building an Open Sour ater Technology	rce Innovation Ecosystem, S.	Power Delivery? System and Physical Design: Backside PDN fo	[Suzaku III]		SRAM, V. Moroz, Synopsys System to Device Co-Optimization for Efficient Development of Analog In-Memory			Role and Function of LiDAR Sensor for Autonomous Driving: Beyond Autonomous Driving Level 3, K. Kweon, Hyundai Motor Company			
Open Source Chip Design on GF180MCU – A Foundry Perspective, K. Chandrasekaran GlobalFoundries			System and Physical Design: Design and Proce Holistic Routing : Power Delivery, Clocking, ar			Accelerators, G. Pedretti, Hewlett Packard E Building a Methodology for Design- and Syst		3D Sensing Technologies for Immersive Experiences in the Metaverse, H. Finkelstein, Meta				
Japan Foundr Fab & AIST	ies' Perspectives on Silicon Design Demo	cratization, S. Hara, Minimal	System and Physical Design: A New VLSI R&D to Enable Back-Side Power Delivery Networks			Hellings, imec Design Technology Co-Optimization Solution	s for Enhanced PPAC for CFET Device	Integrated LiDAR Sensors for L4 Autonomous Vehicles, J. Dunphy, Waymo Indirect-ToF System for Non-Mobile Application, SC. Shin, Samsung Electronics Co.,				
5	pective on Open Source PDKs, Open Sour am, J. Euphrosine and T. Ansell, Google L	, ,	Kobrinsky, Intel Corp.			Architectures, J. Smith, Tokyo Electron's Tec	hnology Center	Ltd.				
-	ication Accelerator Project, M. Daniels, N		Electronic Design Automation: Backside Clock from System Design Perspectives, S. K. Lim, G	,		Application Dependent Architectural Design Optimization for Feature Rich Technologies,		Time of Flight 3D-Sensing Architectures, B. Rae, STMicroelectronics Silicon-Based FMCW Imaging for Human-Like Vison, M. Asghari, SiLC				
•	ernment Perspective on Silicon Design D onomy, Trade and Industry (METI)	Electronic Design Automation: Enabling Backs Digital Full Flow, M. Yue, Cadence			Workshop 5: Uniform and Rigorous Be and Systems	•						
Workshop	2: EUV Lithography & Path to High N/ [Suzaku I+II]	A EUV Patterning Solutions	Electronic Design Automation: Realizing PPA Benefits of Backside Power and Signal Routing Using Synopsys Digital Design Flow, A. Khurana, Synopsys, Inc.			MLPerf Tiny : Benchmarking Ultra-Low-Pow Reddi, Harvard Univ./MLCommons	er Machine Learning Systems, V. Janapa					
•	of Current EUV Tools and Future High NA to Achieve Promised High NA EUV Resol		Process and Integration: 3D Integration of SoC Standard Cell Power Grid from the Wafer Back			Proper Benchmarking of In-Memory Compute Illinois at Urbana-Champaign	ting Architectures, N. Shanbhag, Univ. of					

: Univ.

Characterizing and Assessing In-Memory Computing Processors, N. Verma, Princeton

Novel Resists to Achieve Promised High NA EUV Resolution, R. Wise, Lam Research Corp.

2023 Symposium on VLSI Technology and Circuits (Monday, June 12)

P. Wöltgens, ASML

Process and Integration: Evolution of Backside PDN and Its Impact on Lithography,

Time	Suzaku III	Suzaku II	Suzaku I		Shunju III	Shunju II	Shunju I	Time	-	Suzaku I+II+III		
7:30-18:00	JUZUKU III	542444 11	· · · · · ·	istration						Registration		
8:25-12:20		Future Directions in High 8:25 Introduction 8:30 Industry Megatrends Driving Connect Alphawave Semi 9:20 SerDes System Design, T. Toifl, Cisco S 10:10 Break 10:40 Trends in Digital Coherent Technologi Systems, F. Hamaoka, NTT Network In	Course 2 Inspeed Wireline/Optical IO Evivity R&D, T. C. Carusone, Univ. of Toronto / Systems	8:25 8:30 9:20 10:10 10:40 11:30	Corp. Advances in EUV Lithography: From 0.3 Beyond, E. van Setten, ASML Break Advanced Logic Transistor Process Teo N. Yoshida, Applied Materials, Inc.	ogies for 1 nm & Beyond vards 1nm Node and Beyond, CH. Lin, Intel 33NA Technology towards High-NA and	8:30-17:30 2023 Silicon Nanoelectronics Workshop (Day 2)	8:30-14:00	9:25 9:55 10:25	Forum Compute Paradigms for Secured Microelectronics and Combinatorial Optimization Opening by Forum Chair Cyber-Physical Security from Chip to Cloud, T. Perianin and V. Yli-Mäyry, Secure-IC In-Memory-Computing Based Accelerators for Secure Computing, X. S. Hu, CISE CCF, National Science Foundation Cryptographic Circuit Technology Consisting of Photonic Logic Gates, J. Takahashi, NTT Social Informatics Laboratories Looking Beyond Cryptography: Side-Channel Attacks (and more) on Machine Learning Accelerators, S. Bhasin, Nanyang Technological Univ.		
12:20-13:10			on the Way to Enabling Heterogenous Chiplets in	12:20 13:10	Lunch CMOS Scaling by Backside Power Deliv	ery, N. Horiguchi, imec				Panel Discussion for Secured Microelectronics		
13:10-17:00	13:30- 17:00 Demo Setup	Corp. 14:50 Break 15:10 Design Considerations for High-Speed Communications, A. Vasani, Broadcorr	gh-Speed Wireline Receivers, A. Balankutty, Intel	14:50 15:10 16:00	Break Semiconductor Packaging Revolution in	f 3D Architecture Devices, S. H. Han, Nova In the Era of Chiplets, Y. Orii, Rapidus Corp. iconductor FETs: Challenge & Perspective,		11:40-12:40	13:10	Lunch Quantum-Inspired Annealing Processor, C. H. Kim, Univ. of Minnesota Simulated Bifurcation Machines: Combinatorial Optimization Accelerators Based on a Quantum-Inspired Parallelizable Algorithm, K. Tatsumura, Toshiba Corp. Flexible Optimization Solver Using Mixed Analog-Digital In- Memory Computing, J. P. Strachan, RWTH Aachen		
17:30-21:45		17:30-19:30 Demo Sessi	ion & Reception	-			19:30-21:45 2023 Spintronics Workshop	International S	14:40 15:25	Engineering for Large-Scale Superconducting Quantum Annealers, S. Kawabata, AIST Panel Discussion for Combinatorial Optimization Closing by Forum Chair on Integrated Circuits and Systems for Smart Society: 16:00-18:30 [La Cigogn		

2023 Symposium on VLSI Technology and Circuits (Friday, June 16)

2023 Symposium on VLSI Technology and Circuits (Tuesday, June 13)

Tim						Shunju III	Shunju II			Shunju I					
7:00 17:0						Reg	istration								
							Opening and Plenary Session 1 8:00-8:40								
								0pening Remarks							
							PL1-1	8:40-9:20 (Plenary)							
8:00 10:0							A*STAR Multi-Chiplet Heterogeneous Integration Packaging for Semiconductor System Scaling								
							PL1-2	09:20-10:00 (Plenary)							
							Google A Six-Word Story on the Future of VLSI: AI-Driven, Software-Defined, and Uncomfortably Exciting								
		C1: Neural Interfaces		C2: Non-Volatile Memor	y and Low	Power SRAM	T1: Highlight 1								
	C1-1	10:30-10:55	C2-1 10	0:30-10:55			T1-1	10:30-10:55							
	Univ. of Toronto	A Wireless Sensor-Brain Interface System for Tracking and Guiding Animal Behaviors Through Goal-Directed Closed-Loop Neuromodulation		1Tb 3b/Cell 3D-Flash Memory of more than 05MB/s Program Throughput	17Gb/mm ²	bit Density with 3.2Gbps Interface and	Intel	E-Core Implementation in Intel 4 with PowerVia	(Backside	Power) Technology					
	C1-2	10:55-11:20	C2-2 10	0:55-11:20			T1-2	10:55-11:20							
	Univ. of A Wireless Neural Stimulator IC for Cortical Samsung A 14nm 128Mb Embedded MRAM Macro Achieved the Best Figure-Of-Merit with 80MHz Read Operation Sa and 18.1Mb/mm ² Implementation at 0.64V						Samsung Electronics	World's First GAA 3nm Foundry Platform Techn	ology (SF3) with Novel Multi-Bridge-Channel-FET (MBCFET	™) Process				
10:3	C1-3	11:20-11:45	C2-3 11	1:20-11:45			T1-3	11:20-11:45							
	5 Stanford Univ.	A 1024-Channel 268 nW/pixel 36x36 µm²/ch Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces		3.3.0 Gb/s/pin 4 th Generation F-Chip with Tog Chip Package	gle 5.0 Spe	cification for 16Tb NAND Flash Memory Multi	imec Nanosheet-Based Complementary Field-Effect Transistors (CFETs) at 48nm Gate Pitch, and Middle Dielectric Isolation to Enable CFET Inner Spacer Formation and Multi-Vt Patterning								
	C1-4	11:45-12:10	C2-4 11	1:45-12:10			T1-4	11:45-12:10							
	ETH A 1,024-Channel, 64-Interconnect, Capacitive Neural Interface Using a Cross-Coupled Microelectrode Array Semiconductor Neural Version 2 kb MTJ-Based Non-Volatile SRAM Macro with Novel Data-Aware St				Novel Data-Aware Store Architecture for	тѕмс	Scaled Contact Length with Low Contact Resista	ance in Moi	nolayer 2D Channel Transistors						
	C1-5						T1-5	12:10-12:35							
	Columbia Univ.	A Wireless, Mechanically Flexible, 25µm-Thick,	TSMC 3.	.7-GHz Multi-Bank High-Current Single-Port (peration in 3nm FinFET for HPC Applications	Cache SRA	M with 0.5V-1.4V Wide Voltage Range	Applied Materials	Applied Contact Cavity Shaping and Selective SiGerB Low Temperature Epitaxy Process Solution for Sub 10° 0 cm ² Contact Resistivity in Nonplanar EETs							
12:3			rectiniotogy												
14:0	0	C3: Processors	C4:	Continuous-Time A/D Converteres		C5: Wireless Transceivers		T2: Reliability and Characterization		T3: NAND Flash		T4: DTC0			
	C3-1	14:00-14:25			C5-1		T2-1	14:00-14:25	T3-1	14:00-14:25	T4-1	14:00-14:25			
	National Taiwan Univ.	A 26.4mW, 18.6MS/s Image Reconstruction Processor for IoT Compressive Sensing	MIT A	DC with Time-Interleaved Sub-ADC-DAC	Tokyo Institute of Technology	Power Amplifier Based on 1-bit Delta-Sigma	National Univ. of Singapore	A Novel Bridge Transmission Line Method for Thin-Film Semiconductors: Modelling, Simulation Verification, and Experimental Demonstration	Samsung Electronics	Reliable Cell Characteristics of 8th Generation	Samsung Electronics	Breakthrough Design Technology Co- Optimization Using BSPDN and Standard Cell Variants for Maximizing Block-Level PPA			
	C3-2	14:25-14:50	C4-2 14	4:25-14:50	C5-2	14:25-14:50	T2-2	14:25-14:50	T3-2	-	T4-2	14:25-14:50			
14:0 15:4	IUniv	A 169mW Fully-Integrated Ultrasound Imaging Processor Supporting Advanced Modes for Hand-Held Devices		0.024mm ² 84.2dB-SNDR 1MHz-BW 3 rd - Order VCO-Based CTDSM with NS-SAR Quantizer (NSQ VCO CTDSM)	imec	An 8.7 mW/TX, 21 mW/RX 6-to-9GHz IEEE 802.15.4a/4z Compliant IR-UWB Transceiver with Pulse Pre-Emphasis Achieving 14mm Ranging Precision	Univ. of	First Study of the Charge Trapping Aggravation Induced by Anti-Ferroelectric Switching in the MFIS Stack	Electron	Beyond 10 µm Depth Ultra-High Speed Etch Process with 84% Lower Carbon Footprint for Memory Channel Hole of 3D NAND Flash over 400 Layers	imec	PPA and Scaling Potential of Backside Power Options in N2 and A14 Nanosheet Technology			
15.4	C3-3	14:50-15:15	C4-3 14	4:50-15:15	C5-3	14:50-15:15	T2-3	14:50-15:15	T3-3	14:50-15:15	T4-3	14:50-15:15			
	The Univ. of Tokyo	183.4nJ/inference 152.8µW Single-Chip Fully Synthesizable Wired-Logic DNN Processor for Always- On 35 Voice Commands Recognition Application	Univ. of C	6GHz Multi-Path Multi-Frequency Chopping TΔΣ Modulator Achieving 122dBFS SFDR rom 150kHz to 120MHz BW	POSTECH	Wake-Up Receiver with a PUF-Based OTP	East China Normal Univ.	Catching the Missing EM Consequence in Soft Breakdown Reliability in Advanced FinFETs: Impacts of Self-Heating, On-State TDDB, and Layout Dependence	κιοχία	Demonstration of Recovery Annealing on 7-Bits per Cell 3D Flash Memory at Cryogenic Operation for Bit Cost Scalability and Sustainability	imec	Upcoming Challenges of ESD Reliability in DTCO with BS-PDN Routing via BPRs			
	C3-4		C4-4 15	5:15-15:40			T2-4	15:15-15:40	T3-4		T4-4	15:15-15:40			
	MediaTek	A 12-nm 0.62-1.61 mW Ultra-Low Power Digital CIM-Based Deep-Learning System for End-to-End Always-On Vision		$4.4~\text{GS/s}$ 220 MHz $\Sigma\Delta$ ADC with a Linearized Back-Gate Controlled GmC Filter		An All-Digital Outphasing Transmitter IC for Ka-Band Bit-to-RF Concurrent Multi-Beam DBF Array	Ming Chiao	FeRAM Recovery up to 200 Periods with Accumulated Endurance 10 ¹² Cycles and an Applicable Array Circuit toward Unlimited eNVM Operations	Samsung Electronics	High Bit Cost Scalability and Reliable Cell Characteristics for 7 th Generation 1Tb 4Bit/Cell 3D-NAND Flash	міт	Towards DTCO in High Temperature GaN-On-Si Technology: Arithmetic Logic Unit at 300 °C and CAD Framework Up to 500 °C			
		C6: High-Speed Links		C7: Digital Systems		C8: Biomedical Circuit and Systems		JFS1: New Computing		T5: Ferroelectric 1: FeFETs	T6: Logic	Technology 1: Advanced Platforms and Device Structures			
	C6-1	16:00-16:25	-	6:00-16:25		16:00-16:25	JFS1-1	16:00-16:25 (Invited)	T5-1	16:00-16:25	T6-1	16:00-16:25			
	Univ. of California, Los Angeles		Michigan Tw	wo 22nm 1.8TFLOPS/W DSPs with 1.7Tbps/mm ² AIB 2.0	of Science and	Wireless Body-Area Network Transceiver ICs with Concurrent Body-Coupled Powering and Communication Using Single Electrode	Synopsys	Exploring Power Savings of Gate-All-Around Cryogenic Technology	KAIST	Strategy for 3D Ferroelectric Transistor: Critical Surface Orientation Dependence of HfZrO _x on Si	Intel	Intel PowerVia Technology: Backside Power Delivery for High Density and High- Performance Computing			
	C6-2			6:25-16:50	C8-2	16:25-16:50	JFS1-2	16:25-16:50 (Invited)	T5-2	16:25-16:50	T6-2	16:25-16:50			
	Intel		Haiwan	A 4.8mW, 800Mbps Hybrid Crypto SoC for Post-Quantum Secure Neural Interfacing	KU Leuven	A Fingertip-Mimicking 12×16 200µm-Resolution e-skin Taxel Readout Chip with Per-Taxel Spiking Readout and Embedded Receptive Field Processing	NTT	Circuit Designs for Practical-Scale Fault- Tolerant Quantum Computing	The Univ. of Tokyo	HZO Scaling and Fatigue Recovery in FeFET with Low Voltage Operation: Evidence of Transition from Interface Degradation to Ferroelectric Fatigue	Qualcomm Technologies	High Performance 5G Mobile SOC Productization with 4nm EUV Fin-FET Technology			
16:0	0- C6-3		C7-3 16	6:50-17:15	C8-3	16:50-17:15	JFS1-3	16:50-17:15	T5-3		T6-3	16:50-17:15			
18:0	⁵ Univ. of Toronto	A 0.32pJ/b 90Gbps PAM4 Optical Receiver Front-End with Automatic Gain Control in 12nm CMOS FinFET		Bit-Serial Computing Accelerator for solving Coupled Partial Differential Equations	POSTECH	A 110dB-TCMRR TDM-based 8-Channel Noncontact ECG Recording IC with Suppression of Motion-Induced Coupling in < 0.3s and CMI Cancellation Up to 22V _{PP}	AIST	Long-Time-Constant Leaky-Integrating Oxygen- Vacancy Drift-Diffusion FET for Human-Interactive Spiking Reservoir Computingcomputing	National Taiwan Univ.	First Stacked Nanosheet FeFET Featuring Memory Window of 1.8V at Record Low Write Voltage of 2V and Endurance >1E11 Cycles	imec	Molybdenum Nitride as a Scalable and Thermally Stable pWFM for CFET			
	C6-4	17:15-17:40				17:15-17:40	JFS1-4	17:15-17:40	T5-4		T6-4	17:15-17:40			
	Chinese Academy of Sciences	A 64-Gb/s Reference-Less PAM4 CDR with Asymmetrical Linear Phase Detector Soring 231.5-fsms Clock Jitter and 0.21-pJ/Bit Energy Efficiency in 40-nm CMOS	POSTECH GF	2.35 Gb/s/mm² (7440, 6696) NB-LDPC Decoder Over F(32) Using Memory-Reduced Column-Wise Trellis lin-Max Algorithm in 28nm CMOS Technology		A Pitch-Matched Transceiver ASIC for 3D Ultrasonography with Micro-Beamforming ADCs Based on Passive Boxcar Integration and a Multi-Level Datalink	POSTECH	Experimental Demonstration of Probabilistic- Bit (p-bit) Utilizing Stochastic Oscillation of Threshold Switch Device	National Univ. of Singapore	First Demonstration of BEOL-Compatible MFMIS Fe-FETs with 3D Multi-Fin Floating Gate: In-Situ ALD-Deposited MFM, L_{CH} of 50 nm, > 2×10 ⁹ Endurance, and 58.3% Area Saving	imec	Integration of a Stacked Contact MOL for Monolithic CFET			
	C6-5	17:40-18:05					JFS1-5	17:40-18:05	T5-5		T6-5	17:40-18:05			
	Texas A&M Univ.	A 50Gb/s DAC-Based Multicarrier Polar Transmitter in 22nm FinFET	Institute of wi		Taiwan	A CMOS/Microfluidics Point-of-Care SoC Employing Square-Wave Voltcoulometry for Biosensing with Aptamers and CRISPR-Cas12a Enzymes	Univ. of California, Santa Barbara	Accelerating Adaptive Parallel Tempering with FPGA-Based p-bits	Georgia Institute of Technology	Cold-FeFET as Embedded Non-Volatile Memory with Unlimited Cycling Endurance	POSTECH	Front-Side and Back-Side Power Delivery Network Guidelines for 2nm Node High Perf Computing and Mobile SoC Applications			
20:0	n.			Evening Pane	l Discussio	n 2				Evening Pane	l Discussio	n 1			
20:0				Can Universities Help to Revitalize	the IC Des	ign Industry? If So, How?				What is Scalable & Sustain	hable in th	e Next 25 Years?			

Diversity Meeting - Hosted by SSCS Women in Circuits: 12:45-13:55 [Le Bois]

SSCS/EDS Young Professionals and Women in Circuits Mentoring Event: 18:00-19:30 [La Cigogne]

I	Shunju I

2023 Symposium on VLSI Technology and Circuits (Wednesday, June 14)

Time		Suzaku III		Suzaku II		Suzaku I		Shunju III	· 	Shunju II		Shunju I		
7:00- 17:00						Reg	istration							
										Award and Plenary Session 2				
								8:00-8:40						
							PL2-1	Award Ceremony 8:40-9:20 (Plenary)						
8:00-														
10:00							Hitachi	Quantum Computing from Hype to Game Chang	er					
							PL2-2	09:20-10:00 (Plenary)						
							Western	Searching for Nonlinearity: Scaling Limits in NA	ND Flash					
		CO. Advanced CDAM Design		C10: Adversed	Managian		Digital			77.11:-11:-14.2				
	C9-1	C9: Advanced SRAM Design 10:30-10:55	C10-1	C10: Advanced	Memories		T7-1	10:30-10:55		T7: Highlight 2				
		A 3nm 256Mb SRAM in FinFET Technology with New Array Banking Architecture and Write-Assist Circuitry	Georgia Institute of	A 2.38 MCells/mm ² 9.81 - 350 TOPS/W RRAM	l Compute-i	n-Memory Macro in 40nm CMOS with Hybrid	KIOXIA	Highly Scalable Metal Induced Lateral Crystalli	zation (MII	C) Techniques for Vertical Si Channel in Ultra-Hio	ah (> 200 L	avers) 2D Elash Memory		
	Technology	Scheme for High-Density and Low-V _{MIN} Applications	Technology	Offset/ I_{OFF} Cancellation and $I_{CELL}R_{BLSL}$ Drop Mit	igation						JII (* 300 L			
		10:55-11:20 A 1.9GHz 0.57V Vmin 576Kb Embedded	C10-2 National	10:55-11:20			T7-2	10:55-11:20						
	Systems and	Product-Ready L2 Cache in 5nm FinFET Technology	Tsing Hua Univ.	A 28nm Nonvolatile AI Edge Processor using 27.2 TOPS/W for Tiny AI Edge Devices	4Mb Analog	g-Based Near-Memory- Compute ReRAM with	SK hynix	QLC Programmable 3D Ferroelectric NAND Flas	sh Memory	by Memory Window Expansion Using Cell Stack	Engineerin	g		
10:30-	C9-3			11:20-11:45			T7-3	11:20-11:45						
12:35	Samsung	A 4.0GHz UHS Pseudo Two-Port SRAM with BL Charge Time Reduction and Flying Word-Line for	KAIST			celerator with Dynamic-Scaling ADC for SQNR-		First Observation of Ultra-high Polarization (~ 1	08 µC/cm ²) in Nanometer Scaled High Performance Ferroel	lectric H70	Capacitors with Mo Electrodes		
	Electronics	HPC Applications in 4nm FinFÉT Technology		Boosting and Layer-Wise Adaptive Bit-Trunca	tion		Univ.		- po, em					
		11:45-12:10 A 4.24GHz 128X256 SRAM Operating Double		11:45-12:10			T7-4 Sonv	11:45-12:10						
	TSMC	Pump Read Write Same Cycle in 5nm Technology	Weight Sets for AI Edge Applications	nory Using	Foundry 81 SRAM Bitcell Supporting 16 Kernel	Semiconducto Solutions	r Noise Performance Improvements of 2-Layer Ti	ansistor P	xel Stacked CMOS Image Sensor with Non-Dope	d Pixel-Finl	FETs			
			C10-5	12:10-12:35				5 12:10-12:35						
	TSMC Design Technology	A 3-nm 27.6-Mbit/mm ² Self-Timed SRAM Enabling 0.48 - 1.2 V Wide Operating Range with Far-End	KAIST	SP-PIM: A 22.41TFLOPS/W, 8.81Epochs/Sec		ined Processing-In-Memory Accelerator with	KAIST	Cryogenic RF Transistors and Routing Circuits	Based on 3	D Stackable InGaAs HEMTs with Nb Superconduc	tors for La	rge-Scale Quantum Signal Processing		
12.25	Japan	Pre-Charge and Weak-Bit Tracking		Local Error Prediction for On-Device Learning	1				1		1			
12:35- 14:00														
	C11-1	C11: DC-DC Converter 14:00-14:25	C12-1	C12: Digital Building Blocks 14:00-14:25	-	limeter-Wave Transceivers and Synthesizers 14:00-14:25	JFS2-1	JFS2: AR/VR/MR Metaverse 1 14:00-14:25 (Invited)	TES1-1	TFS1: Future Memory Directions 14:00-14:25 (Invited)	T8: T8-1	Logic Technology 2: Advanced Processes 14:00-14:25		
	Univ of	A 0.05-to-3.1A 585mA/mm ³ 97.3%-Efficiency Outphase	-	A Fully Synthesizable 100Mbps Edge-Chasing	Tokyo	A Sub-THz Full-Duplex Phased-Array Transceiver		A Prototype 5nm Custom Sensor SoC for Augmented	Samsung	Ongoing Evolution of DRAM Scaling via Third		Building High Performance Transistors on		
	Macau	Switched-Capacitor Hybrid Buck Converter with Relieved Capacitor Inrush Current and C_{OUT} -Free Operation	Rice Univ.	True Random Number Generator		with Self-Interference Cancellation and LO Feedthrough Suppression	Meta	Reality/Virtual Reality Targeting Smartglasses with Embedded Computer Vision, Audio, Security and ML		Dimension - Vertically Stacked DRAM -	TSMC	Carbon Nanotube Channel		
		14:25-14:50	C12-2	14:25-14:50	C13-2	14:25-14:50	JFS2-2	14:25-14:50	TFS1-2	14:25-14:50 (Invited)	T8-2	14:25-14:50		
16.00-		96.48% Peak-Efficiency Continuous-Current Step- Up Battery Charger (CC-SUBC) with Dual Energy-	Intel	218Kauth/S, 3nJ/Auth SCA/ML-Resistant Privacy- Preserving Mutual Authentication Accelerator with	Tsinghua		Sony Semiconducto	A Back-Illuminated 6 µm SPAD Depth Sensor with r PDE 36.5% at 940 nm via Combination of Dual	ІВМ	Phase Change Memory-Based Hardware Accelerators for Deep Neural Networks		Record High Active Boron Doping Using Low Temperature In-situ CVD: Enabling Sub-5×10 ⁻¹⁰ Ω -cm ² ρ_c from Cryogenic		
15:40		Harvesting Sources for Automotive Application 14:50-15:15	C12-3	a Crypto-Double-Coupled PUF in 4nm Class CMOS 14:50-15:15	C13-3	Chirp Bandwidth and 960-MHz/µs Chirp Slope 14:50-15:15	Solutions JFS2-3	Diffraction Structure and 2×2 On-Chip Lens 14:50-15:15	TFS1-3	14:50-15:15	Singapore T8-3	(5 K) to Room Temperature 14:50-15:15		
	Kyungpook	A 19.8W/29.6W Hybrid Step-Up/Down DC-	National	ECC-Less Multi-Level SRAM Physically Unclonable	Univ. of	An 18 8-to-23 3 GHz ADPLL Based on Charge-	Northwestern	Human Activity Recognition SoC for AR/VR with Integrated	National	Non-Destructive-Read 1T1C Ferroelectric Capacitive	Kyungpook	$L_g = 60 \text{ nm } In_{0.53}Ga_{0.47}As \text{ MBCFETs: From}$		
	Matter al Habe			Function and 127% PUF-to- Memory Capacity Ratio with No Bitcell Modification in 28nm	Technology of China	Steering-Sampling Technique Achieving 75.9 fs RMS Jitter and -252 dB FoM	Univ.	Neural Sensing, AI Classifier and Chained Infrared Communication for Multi-Chip Collaboration		Memory Cell with BEOL 3D Monolithically Integrated IGZO Access Transistor for 4F ² High-Density Integration	National Univ.	$g_{m_{max}}$ = 13.7 mS/µm and Q = 180 to Virtual- Source Modeling		
		15:15-15:40		15:15-15:40	C13-4	15:15-15:40			TFS1-4	15:15-15:40	T8-4	15:15-15:40		
		DC-DC Converter Based on Electromagnetically Coupled Class-D LC		A Static Contention-Free Dual-Edge-Triggered Flip-Flop with Redundant Internal Node Transition	Hong Kong Univ. of Science and	A 24-30 GHz Cascaded QPLL Achieving 56.8-			міт	Foundry Monolithic 3D BEOL Transistor + Memory Stack: Iso-Performance and Iso-Footprint BEOL Carbon Nanotube	Forschungszentrum	High Performance 5 nm Si Nanowire FETs with a Record ¹ Small SS = 2.3 mV/dec and High Transconductance at 5.5		
	Zurich	Oscillators and a Resonant LC Flying Impedance in 22nm FDSOI CMOS C14: Nyquist-Rate ADCs		Elimination for Ultra-Low-Power Applications 15: Images for Emerging Applications	Technology	fs RMS Jitter and -248.6-dB FoM _{jitter} C16: Advanced NNs		79: PCM, ReRAM and Threshold Switch	T	FET+RRAM vs. FEOL Silicon FET+RRAM 0: Ferroelectric 2: FeRAM, FTJ and FMD		K Enabled by Dopant Segregated Silicide Source/Drain 1: New Channel Material 1: InOx and ITO		
	C14-1	16:00-16:25		16:00-16:25	C16-1		T9-1	16:00-16:25		16:00-16:25		16:00-16:25		
		A 2GS/s 11b 8x Interleaved ADC with 9.2	Samsung	An Indirect Time-of-Flight CMOS Image Sensor Achieving Sub-ms Motion Lagging	POSTECH	A 28 nm 66.8 TOPS/W Sparsity-Aware	SK hynix	The Chalcogenide-Based Memory Technology Continues : Beyond 20nm 4-Deck 256Gb Cross-	Chinese Academy of	First Demonstration of a Design Methodology for Highly Reliable Operation at High	Purdue	Ultrathin Atomic-Layer-Deposited In_2O_3 Radio- Frequency Transistors with Record High f_T of		
		ENOB and 69.9dB SFDR in 28nm CMOS		and 60fps Depth Image from On-Chip ISP		Dynamic-Precision Deep-Learning Processor		Point Memory	Sciences	Temperature on 128kb 1T1C FeRAM Chip	Univ.	36 GHz and BEOL Compatibility		
		16:25-16:50 A 79.5dB-SNDR Pipelined-SAR ADC with a	C15-2 Sony	16:25-16:50 A 3.36 µm-Pitch SPAD Photon-Counting Image Sensor Using	C16-2	16:25-16:50 ANP-G: A 28nm 1.04pJ/SOP Sub-mm ² Spiking and Back-Propagation	T9-2	16:25-16:50 Simple Binary In-Te OTS with Sub-nm HfO _x	T10-2 National	16:25-16:50 3D Stackable Vertical Ferroelectric Tunneling Junction (V-FTJ) with On/	T11-2 National	16:25-16:50 Thickness-Engineered Extremely-Thin Channel High Performance		
		Linearity-Shifting 32× Dynamic Amplifier and Mounted-Over-Die Bypass Capacitors	Semiconductor	r Clustered Multi-Cycle Clocked Recharging Technique with Intermediate Most-Significant-Bit Readout	Tsinghua Univ.	Hybrid Neural Network Asynchronous Olfactory Processor Enabling Few-Shot Class-Incremental On-Chip Learning	POSTECH		Taiwan Univ.	3D Stackable Vertical Ferroelectric Tunneling Junction (V-FTJ) with On/ Off Ratio 1500x, Applicable Cell Current, Self-Rectifying Ratio 1000x, Robust Endurance of 10 ⁶ Cycles, Multilevel and Demonstrated Macro Operation Toward High-Density BEOL NVMs	Univ. of	ITO TFTs with Raised S/D Architecture: Record-Low R_{SD} , Highest Mobility (Sub-4 nm T_{CH} Regime), and High V_{TH} Tunability		
16:00-	C1/-3	16:50-17:15		16:50-17:15	C16-3		T9-3	16:50-17:15	T10-3	16:50-17:15	T11-3	16:50-17:15		
	Univ. of	Dipolino ADC Licing a Floating Dipa Amplitian		A Monolithic Amorphous-Selenium/CMOS Small-Pixel- Effect-Enhanced X-Ray-Energy-Discriminating Quantum-	IBM T. J. Watson	A Switched-Capacitor Integer Compute Unit with Decoupled Storage and Arithmetic for	Chinese Academy of	16-Layer 3D Vertical RRAM with Low Read Latency (18ns), High Nonlinearity (>5000) and Ultra-Low	KAIST	Ultra-high Tunneling Electroresistance Ratio (2×10 ⁴) & Endurance (10 ⁸) in Oxide Semiconductor-Hafnia Self-	Purdue	Ultrahigh Bias Stability of ALD In_2O_3 FETs Enabled		
	Michigan	and Gain-Enhancing Miller Negative-C		Counting Pixel for Biomedical Imaging	Research Center	Cloud AI Inference in 5nm CMOS	Sciences	Leakage Current (~pA) Self-Selective Cells		Rectifying (1.5×10 ³) Ferroelectric Tunnel Junction	Univ.	by High Temperature O ₂ Annealing		
		17:15-17:40 A 0.75V 0.016mm ² 12ENOB 7nm CMOS Cyclic		17:15-17:40 A -20°C~+107°C 52mk-NETD Reference-Cell-	C16-4 Tokyo	17:15-17:40 Pianissimo: A Sub-mW Class DNN Accelerator	T9-4 National	17:15-17:40	T10-4 National	17:15-17:40 First Demonstration of BEOL-Compatible Write-Enhanced		17:15-17:40 Co-Designed Capacitive Coupling-Immune Sensing		
	Hitachi		Tsing Hua	Free 15-bits ROIC for 80x60 Microbolometer Thermal Imager	Institute of		Tsing Hua Univ.	High Density Embedded 3D Stackable Via RRAM in Advanced MCU Applications	Univ. of	Ferroelectric-Modulated Diode (FMD): New Possibility for Oxide Semiconductor Memory Devices	Stanford Univ.	Scheme for Indium-Tin-Oxide (ITO) 2T Gain Cell Operating at Positive Voltage Below 2 V		
		and synamic oupacitance searing	51114.	merinacinager		17:40-18:05	51114.		Singapore	Salas Semiconductor Pichioly Devices				
					Tsinghua	A 28nm 77.35TOPS/W Similar Vectors Traceable Transformer Processor with Principal-Component-Prior								
48.44					Univ.	Speculating and Dynamic Bit-Wise Stationary Computing								
17:00- 19:00								19:15-21:15						
20:00-	.													
21:30								Banquet						
Code	Chip Troy	el Award Meeting: 17:00-19:00 [Salon de Charn												

I	Shunju I

2023 Symposium on VLSI Technology and Circuits (Thursday, June 15)

	2023 Symposium on VLSI Technology and Circuits (Thursday, June 15)											
Time		Suzaku III		Suzaku II		Suzaku I		Shunju III		Shunju II	Shunju I	
8:00						Reg	gistration					
				C17: Power Management Circuit		C18: Data Conversion Techniques		JFS3: AR/VR/MR Metaverse 2	T12: Fe	rroelectric 3: Advanced Structures and Processes	T	13: Quantum Computing and Cryo-CMOS
			C17-1	8:30-8:55		8:30-8:55		8:30-8:55 (Invited)	T12-1	8:30-8:55		8:30-8:55
			KU Leuven	A Fully Integrated 230 V_{RMS} -to-12 V_{DC} AC-DC Converter Achieving 9 mW/mm²	Univ. of	A 3-320 fJ/Conv.step Continuous Time Level Crossing ADC with Dynamic Self-Biasing Comparators Achieving 61.4 dB-SNDR	Sony	216 fps 672 × 512 pixel 3 µm Indirect Time- of-Flight Image Sensor with 1-Frame Depth Acquisition for Motion Artifact Suppression	National Univ. of Singapore	Grain Size Reduction of Ferroelectric HZO Enabled by a Novel Solid Phase Epitaxy (SPE) Approach: Working Principle, Experimental Demonstration, and Theoretical Understanding	imec	Comprehensive 300 mm Process for Silicon Spin Qubits with Modular Integration
			C17-2	8:55-9:20		8:55-9:20	JFS3-2	8:55-9:20	T12-2	8:55-9:20	T13-2	8:55-9:20
8:30 10:10			Samsung Electronics C17-3	5G NR RF PA Supply Modulator Supporting 179ns 0.5-to-5.5V Symbol Power Tracking and Envelope Tracking 9:20-9:45	Electronics	A 24-OSR to Simplify Anti-Aliasing Filter 2MHz-BW 83dB-DR 3rd- Order DT-DSM Using FIA-Based Integrator and Noise-Shaping SAR Combined Digital Noise-Coupling Quantizer 9:20-9:45	Meta JFS3-3	A 3.96µm, 124dB Dynamic Range, 6.2mW Stacked Digital Pixel Sensor with Monochrome and Near- Infrared Dual-Channel Global Shutter Capture 9:20-9:45	National Univ. of Singapore T12-3	First Demonstration of Work Function-Engineered BEOL- Compatible IGZO Non-Volatile MFMIS AFeFETs and Their Co-Integration with Volatile-AFeFETs 9:20-9:45	EPFL T13-3	Quantum Dots Array on Ultra-Thin SOI Nanowires with Ferromagnetic Cobalt Barrier Gates for Enhanced Spin Qubit Control 9:20-9:45
			Korea Univ.	A 93.5%-Efficiency 13.56-MHz-Bandwidth Optimal On/Off Tracking Active Rectifier with Fully Digital Feedback-Based Delay	KAIST	A 2.5mW 12MHz-BW 69dB SNDR Passive Bandpass $\Delta\Sigma$ ADC with Highpass Noise-	KIST	Doping-Optimized Back-Illuminated Single-Photon Avalanche Diode in Stacked 40 nm CIS Technology	Univ. of California,	Record Transconductance in Ler~30 nm Self-Aligned Replacement Gate ETSOI nFETs Using Low EOT Negative	тѕмс	How Fault-Tolerant Quantum Computing Benefits from Cryo-CMOS Technology
			C17-4	Control for Adaptive Efficiency Compensation 9:45-10:10		Shaping SAR Quantizers 9:45-10:10		Achieving 60% PDP at 905 nm	Berkeley T12-4	Capacitance HfO ₂ -ZrO ₂ Superlattice Gate Stack 9:45-10:10	T13-4	9:45-10:10
			Analog Devices	A 0.22mm ² per Channel Data Link for Reinforced Isolation with >25kVpk Surge Tolerance and >295kV/µs	KAIST	A 187dB FoMs 46fJ/Conv. 2 nd -order Highpass ΔΣ Capacitance-to-Digital Converter			National Taiwan	Towards Epitaxial Ferroelectric HZO on n $^{+}$ -Si/Ge Substrates Achieving Record 2Pr = 84 μ C/		Determining the Low-Frequency Noise Source in Cryogenic Operation of Short-Channel Bulk
				Common Mode Transient Immunity		1 3			Univ.	cm ² and Endurance > 1E11	Technology	MOSFETs
	C19-1	C19: Analog Circuit Techniques 10:30-10:55		20: Circuit Designs for Optical Systems 10:30-10:55	C21-1	C21: PIM/CIM Systems 10:30-10:55			JFS4-1	JFS4: 3D System Integration 10:30-10:55 (Invited)		ew Channel Material 2: InOx and 2D Material 10:30-10:55
		A Reconfigurable Analog FIR Filter Achieving	020-1	A Mobile OLED Source-Driver IC Featuring Ultra-		A General-Purpose Compute-in-Memory Processor	•		Advanced	AMD Instinct [™] MI250X Accelerator Enabled by		A Nanosheet Oxide Semiconductor FET Using ALD InGaOx Channel
	Univ. of Michigan	-70dB Rejection with Sharn Transition for	KAIST	Compact 3-Stage-Cascaded 10-Bit DAC and 42V/µs- Slew-Rate True-DC-Interpolative Super-OTA Buffer	lloiv	Combining CPU and Deep Learning with Elevated CPU Efficiency and Enhanced Data Locality			Micro Devices	Elevated Fanout Bridge Advanced Packaging Architecture	of Talaya	and InSnOx Electrode with Normally-Off Operation, High Mobility and Reliability for 3D Integrated Devices
	C19-2	10:55-11:20	C20-2	10:55-11:20	<u> </u>	10:55-11:20	-		JFS4-2	10:55-11:20 (Invited)	T14-2	10:55-11:20
	ETH Zurich	An Energy-Efficient Impedance-Boosted Discrete- Time Amplifier Achieving 0.34 Noise Efficiency Factor and 389 MΩ Input Impedance		A 16-Channel Active-Matrix Mini-LED Driver with an USI-B for EMI Noise Reduction	KAIST	A 709.3 TOPS/W Event-Driven Smart Vision SoC with High-Linearity and Reconfigurable MRAM PIM			TSMC	An Integrated System Scaling Solution for Future High Performance Computing	Ming Chiao	Aggressively Scaled Atomic Layer Deposited Amorphous InZnO _x Thin Film Transistor Exhibiting Prominent Short Channel Characteristics (SS= 69 mV/dec.; DIBL = 27.8 mV/V) and High G _m (802 μ S/ μ m at V ₁₅ = 2V)
10:30	- C19-3	11:20-11:45	C20-3	11:20-11:45	C21-3	11:20-11:45	1		JFS4-3	11:20-11:45	T14-3	11:20-11:45
12:35	Sogang Univ.	A 1V 20.7µW Four-Stage Amplifier Capable of Driving a 4-to-12nF Capacitive Load with >1.07MHz GBW with an Improved Active Zero	Semiconductor Energy Laboratory	Two-Dimensionally Arranged Display Drivers Achieved by OS/Si Structure		A 5.6-89.9TOPS/W Heterogeneous Computing-in- Memory SoC with High-Utilization Producer-Consumer Architecture and High-Frequency Read-Free CIM Macro			Semiconducto	4-Layer Wafer on Wafer Stacking Demonstration with Face r to Face/Face to Back Stacked Flexibility Using Hybrid Bond/TSV-Middle for Various 3D Integration	Intel	2D Materials in The BEOL
	C19-4	11:45-12:10	C20-4	11:45-12:10		11:45-12:10		1		11:45-12:10	T14-4	11:45-12:10
	Delft Univ. of	A Class-D Piezoelectric Speaker Driver Using A Quadrature Feedback Chopping Scheme Achieving y 29dB Large-Signal THD+N Improvement	Analog Photonics	A 2048-Channel, 125µW/ch DAC Controlling a 9,216-Element Optical Phased Array Coherent Solid-State LiDAR	KAIST	GPPU: A 330.4-µJ/task Neural Path Planning Processor with Hybrid GNN Acceleration for Autonomous 3D Navigation			Hitachi	Bumpless Build Cube (BBCube) 3D: Heterogeneous 3D Integration Using WoW and CoW to Provide TB/s Bandwidth with Lowest Bit Access Energy	imec	Integration of Epitaxial Monolayer MX ₂ Channels on 300mm Wafers via Collective-Die- To-Wafer (CoD2W) Transfer
	C19-5		C20-5	12:10-12:35		12:10-12:35	-		JFS4-5	12:10-12:35	T14-5	12:10-12:35
	Tokyo Institute of	A Compact 0.9uW Direct-Conversion Frequency Analyzer for Speech Recognition with Wide-Range	National Univ. of	Super-Cutoff Analog Building Blocks for pW/Stage Operation and Demonstration of 78-pW Battery-Less	KAIST	NeRPIM: A 4.2 mJ/frame Neural Rendering Processing-in-Memory Processor with Space			Semiconducto Energy	r 1Mbit 1T1C 3D DRAM with Monolithically Stacked One Planar FET and Two Vertical FET Heterogeneous Oxide	imec	Towards Low Damage and fab-Compatible Top-Contacts in MX ₂ Transistors Using a Combined Synchronous Pulse
12:35		Q-Controlable Bandpass Rectifier	Singapore	Light-Harvested Wake-Up Receiver down to Moonlight		Encoding Block-Wise Mapping for Mobile Devices			Laboratory	Semiconductor Layers over Si CMOS		Atomic Layer Etch and Wet-Chemical Etch Approach
14:00												
	JFS5-1	JFS5: Automotive and Aerospace 14:00-14:25 (Invited)	C22-1	C22: Advanced Imagers 14:00-14:25	C23-1	C23: Short-Reach Links 14:00-14:25			T15-1	T15: In-Memory Computing 14:00-14:25	· · · · · · · · · · · · · · · · · · ·	ic Technology 3: Advanced Platforms and Processes 14:00-14:25
	JAXA	How Harsh is Space?—Equations That Connect Space and Ground VLSI		A 90 µW at 1 fps and 1.33 mW at 30 fps 120 dB Intra-Scene Dynamic Range 640 x 480 Stacked	Yonsei	A Low-Voltage Area-Efficient TSV I/O for HBM with Data Rate up to 15Gb/s Featuring Overlapped	-		Macronix International	Chip Demonstration of a High-Density (43Gb) and High-Search-Bandwidth (300Gb, s) 3D NAND Based In-Memory Search Accelerator for Ternary Content Addressable	1	Characterizing and Reducing the Layout Dependent Effect and Gate Resistance to Enable Multiple-Vt
	JFS5-2	14:25-14:50 (Invited)	C22-2	Image Sensor for Autonomous Vision Systems 14:25-14:50		Multiplexing Driver, ISI Compensators and QEC 14:25-14:50	-		T15-2	Memory (TCAM) and Proximity Search of Hamming Distance 14:25-14:50	T16-2	Scaling for a 3nm CMOS Technology 14:25-14:50
14:00 15:40	Sandia	Enabling High-Speed, High-Resolution Space- Based Focal Plane Arrays with Analog In- Memory Computing	Prophesee	A 320 x 320 1/5" BSI-CMOS Stacked Event Sensor for Low-Power Vision Applications	NVIDIA	A 0.190-pJ/bit 25.2-Gb/s/wire Inverter- Based AC-Coupled Transceiver for Short- Reach Die-to-Die Interfaces in 5-nm CMOS			National Central Univ.	3-Bits-Per-Cell 2T32CFE nvTCAM by Angstrom-laminated	imec	Novel Low Thermal Budget CMOS RMG: Performance and Reliability Benchmark Against Conventional High Thermal Budget Gate Stack Solutions
	JFS5-3	14:50-15:15	C22-3	14:50-15:15	C23-3	14:50-15:15	_		T15-3	14:50-15:15	T16-3	14:50-15:15
	STMicroelectronics	ASIL-D Automotive-Grade Microcontroller in 28nm FD-SOI with Full-OTA Capable 21MB Embedded PCM Memory and Highly Scalable Power Management	Sony Semiconductor Solutions	An 0.08e ⁻ •pJ/Step 14-bit Gain-Adaptive Single-Slope Column ADC with Enhanced HDR Function for High-Quality Imagers	at Urbana-	A 5.2 Gb/s 3 mm Air-Gap 4.7 pJ/bit Capacitively-Coupled Transceiver for Giant Video Walls Enabled by a Dual- Edge Tracking Clock and Data Recovery Loop	ł		TSMC	Write-Enhanced Single-Ended 11T SRAM Enabling Single Bitcell Reconfigurable Compute-In-Memory Employing Complementary FETs	Samsung Electronics	Highly Reliable/Manufacturable 4nm FinFET Platform Technology (SF4X) for HPC Application with Dual-CPP/HP-HD Standard Cells
			C22-4	15:15-15:40	C23-4	15:15-15:40			T15-4	15:15-15:40	T16-4	15:15-15:40
			vivo Mobile Communication	A 60fps 9.9nJ/frame-pixel CMOS Image Sensor with On- Chip Pixel-Wise Conversion Gain Modulation for Per- Frame Adaptive DCG-HDR Imaging	1	A Sub-500fJ/bit 3D Direct Bond Silicon Photonic Transceiver in 12nm FinFET			Tsinghua Univ.	Monolithic 3D Integration of FeFET, Hybrid CMOS Logic and Analog RRAM Array for Energy-Efficient Reconfigurable Computing-In-Memory Architecture	National Taiwan Univ.	Extremely High- κ H _{f0.2} Zr _{0.8} O ₂ Gate Stacks Integrated into Ge _{0.95} Si _{0.05} Nanowire and Nanosheet nFETs Featuring Respective Record Iow per Footprint of 9200µA/µm and Record Iow per Stack of 360µA at Vov=Vos=0.5V
		C24: Sensor Circuits and Systems		5: Power and Security Control Systems		C26: Frequency Generation		T17: New Channel Material 3: IGZO		T18: DRAM/MRAM		TFS2: BEOL/BSPDN
	C24-1 Harvard	16:00-16:25 A Wideband CMOS NMR Spectrometer for	C25-1 Northwestern	16:00-16:25 Proactive Power Regulation with Real-Time Prediction	The Univ	16:00-16:25 A Reference-Sampling PLL with Low-Ripple		16:00-16:25 Overcoming Negative nFET V _{TH} by Defect-Compensated Low- Thermal Pure 10, 1070 Network Oxide Channel to Achieve Record	T18-1 Samsung	16:00-16:25		16:00-16:25 (Invited) Novel Cell Architectures with Back-
	Univ.	Multinuclear Molecular Fingerprinting	Univ.	and Fast Response Guardband for Fine-Grained Dynamic Voltage Droop Mitigation on Digital SoCs	of Tokyo	Double-Sampling PD Achieving -80-dBc Reference Spur and -259-dB FoM with 12-pF Input Load	Univ. of Singapore	Thermal Budget ITO-IGZO Hetero-Oxide Channel to Achieve Record Mobility and Enhancement-Mode Operation	Electronics			side Transistor Contacts for Scaling and Performance
	C24-2		C25-2	16:25-16:50		16:25-16:50	T17-2	16:25-16:50	T18-2	16:25-16:50	TFS2-2	16:25-16:50 (Invited)
	Yonsei Univ.	A Highly-Digital PWM-Based Impedance Monitoring IC with 143.2dB DR and 17.7fFrms Resolution	Intel	A 2.6 mV/b Resolution, 1.2 GHz Throughput, All-Digital Voltage Droop Monitor Using Coupled Ring Oscillators in Intel 4 CMOS		A 2.4-to-4.2GHz 440.2fsrms-Integrated-Jitter 4.3mW Ring- Oscillator-Based PLL Using a Switched-Capacitor-Bias- Based Sampling PD in 4nm FinFET CMOS	Purdue Univ.	First Demonstration of BEOL-Compatible Atomic-Layer-Deposited InGaZnO TFTs with 1.5 nm Channel Thickness and 60 nm Channel Length Achieving ON/OFF Ratio Exceeding 10 ¹¹ , SS of 68 mV/dec, Normal-Off Operation and High Positive Gate Bias Stability	Xi'an UnilC Semiconductors	A 135 GBps/Gbit 0.66 pJ/bit Stacked Embedded DRAM with Multilayer Arrays by Fine Pitch Hybrid Bonding and Mini-TSV	imec	Nano-Through Silicon Vias (nTSV) for Backside Power Delivery Networks (BSPDN)
16:00	C24-3	16:50-17:15	C25-3	16:50-17:15	C26-3	16:50-17:15	T17-3	16:50-17:15	T18-3	16:50-17:15	TFS2-3	16:50-17:15
18:05			National Univ. of Singapore	Self-Referenced Design-Agnostic Laser Voltage Probing Attack Detection with 100% Protection Coverage, 58% Area Overhead for Automated Design	MediaTek	A 6nW 30.8kHz Relaxation Oscillator with Sampling Bias-Free RC Circuit and Dynamic Power Scaling in a 12nm FinFET	National Taiwan Univ.	First Demonstration of a-IGZO GAA Nanosheet FETs Featuring Achievable SS=61 mV/dec, I_{eff} <10 ⁻⁷ µA/µm, DIBL=44 mV/V, Positive V ₇ , and Process Temp. of 300°C	KAIST	Epitaxial Strain Control of $H_xZr_{1:x}O_2$ with Sub- nm IGZO Seed Layer Achieving EOT=0.44 nm for DRAM Cell Capacitor	Applied Materials	BEOL Interconnect Innovation: Materials, Process and Systems Co-Optimization for 3nm Node and Beyond
	C24-4		C25-4	17:15-17:40	<u> </u>	17:15-17:40		17:15-17:40	T18-4	17:15-17:40	TFS2-4	17:15-17:40
	National Univ. of Singapore		National Univ. of Singapore	Visual Content-Agnostic Novelty Detection Engine with 2.4 pJ/pixel Energy and Two-Order of Magnitude DNN Activity Reduction in 40 nm		A 50µW Ring-Type Complementary Inverse- Class-D Oscillator with 191.4dBc/Hz FoM and 205.6dBc/Hz FoM _A	SK hynix	Demonstration of Crystalline IGZO Transistor with High Thermal Stability for Memory Applications		Highly Reliable and Manufacturable MRAM Embedded in 14nm FinFET Node	imec	Block-Level Evaluation and Optimization of Backside PDN for High-Performance Computing at the A14 Node
	C24-5		C25-5	17:40-18:05		17:40-18:05	T17-5	17:40-18:05	T18-5	17:40-18:05	TFS2-5	17:40-18:05
	Delft Univ. of	A 720 nW Current Sensor with 0-to-15V Input Common-Mode Range and ±0.5% Gain Error	National Univ. of	Voltage Scaling-Agnostic Counteraction of Side-Channel Neural Net Reverse Engineering via Machine Learning	KAIST	A 122fs _{rms} -Jitter and -60dBc-Reference-Spur 12.24GHz MDLL with a 102-Multiplication		Lowest $I_{OFF} < 3 \times 10^{-21}$ A/µm in Capacitorless DRAM Achieved by Reactive Ion Etch of IGZO-TFT	National Yang Ming Chiao	U-MRAM: Transistor-Less, High-Speed (10 ns), Low-Voltage (0.6 V), Field-Free Unipolar MRAM	Samsung	Structural Reliability and Performance Analysis of Backside PDN
	rechnology	from -40 to 85 °C	Singapore	Compensation and Multi-Level Shuffling		Factor Using a Power-Gating Technique		11.1	Tung Univ.	for High-Density Data Memory		